On a Multistable Type of Free Boundary Problem with a Flux at the Boundary

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
{"title":"On a Multistable Type of Free Boundary Problem with a Flux at the Boundary","authors":"","doi":"10.1155/2023/8944465","DOIUrl":null,"url":null,"abstract":"<jats:p>This paper studies the free boundary problem of a multistable equation with a Robin boundary condition, which may be used to describe the spreading of the invasive species with the solution representing the density of species and the free boundary representing the boundary of the spreading region. The Robin boundary condition <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <msub>\n <mrow>\n <mi>u</mi>\n </mrow>\n <mrow>\n <mi>x</mi>\n </mrow>\n </msub>\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mi>t</mi>\n <mo>,</mo>\n <mn>0</mn>\n </mrow>\n </mfenced>\n <mo>=</mo>\n <mi>τ</mi>\n <mi>u</mi>\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mi>t</mi>\n <mo>,</mo>\n <mn>0</mn>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> means that there is a flux of species at <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mi>x</mi>\n <mo>=</mo>\n <mn>0</mn>\n </math>\n </jats:inline-formula>. By studying the asymptotic properties of the bounded solution, we obtain the following two situations: (i) four types of survival states: the solution is either big spreading (the solution converges to a big stationary solution defined on the half-line) or small spreading (the solution converges to a small stationary solution defined on the half-line) or small equilibrium state (the survival interval <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <mfenced open=\"[\" close=\"]\">\n <mrow>\n <mn>0</mn>\n <mo>,</mo>\n <mi>h</mi>\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mi>t</mi>\n </mrow>\n </mfenced>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> tends to a finite interval and the solution tends to a small compactly supported solution) or vanishing happens (the solution and the interval <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <mfenced open=\"[\" close=\"]\">\n <mrow>\n <mn>0</mn>\n <mo>,</mo>\n <mi>h</mi>\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mi>t</mi>\n </mrow>\n </mfenced>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> shrinks to 0 as <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <mi>t</mi>\n <mo>⟶</mo>\n <mi>T</mi>\n </math>\n </jats:inline-formula> for <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\n <mi>T</mi>\n <mo><</mo>\n <mo>+</mo>\n <mo>∞</mo>\n </math>\n </jats:inline-formula>); (ii) a trichotomous survival states of solutions: big spreading, big equilibrium state, and vanishing.</jats:p>","PeriodicalId":49111,"journal":{"name":"Advances in Mathematical Physics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2023/8944465","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies the free boundary problem of a multistable equation with a Robin boundary condition, which may be used to describe the spreading of the invasive species with the solution representing the density of species and the free boundary representing the boundary of the spreading region. The Robin boundary condition u x t , 0 = τ u t , 0 means that there is a flux of species at x = 0 . By studying the asymptotic properties of the bounded solution, we obtain the following two situations: (i) four types of survival states: the solution is either big spreading (the solution converges to a big stationary solution defined on the half-line) or small spreading (the solution converges to a small stationary solution defined on the half-line) or small equilibrium state (the survival interval 0 , h t tends to a finite interval and the solution tends to a small compactly supported solution) or vanishing happens (the solution and the interval 0 , h t shrinks to 0 as t T for T < + ); (ii) a trichotomous survival states of solutions: big spreading, big equilibrium state, and vanishing.
边界处有通量的多稳定型自由边界问题
本文研究了具有Robin边界条件的多稳态方程的自由边界问题,该问题可用于描述入侵物种的扩散,其解表示物种密度,自由边界表示扩散区域的边界。Robin边界条件u x t,0=τ,0意味着在x=0处存在物种的通量。通过研究有界解的渐近性质,我们得到了以下两种情况:(i)四种生存状态:解要么是大展开(解收敛于半线上定义的大平稳解),要么是小展开(解会聚于半线上限定的小平稳解)或是小平衡状态(生存期0,h t趋向于有限区间,并且解趋向于小的紧支撑解)或消失(解和区间0,h t收缩为0作为t⟶ T表示T+∞);(ii)解的三重生存状态:大扩散、大平衡状态和消失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematical Physics
Advances in Mathematical Physics 数学-应用数学
CiteScore
2.40
自引率
8.30%
发文量
151
审稿时长
>12 weeks
期刊介绍: Advances in Mathematical Physics publishes papers that seek to understand mathematical basis of physical phenomena, and solve problems in physics via mathematical approaches. The journal welcomes submissions from mathematical physicists, theoretical physicists, and mathematicians alike. As well as original research, Advances in Mathematical Physics also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信