A simple theoretical approach to converging of Myoglobin-Assay with different pH values

IF 0.9 Q4 CHEMISTRY, MULTIDISCIPLINARY
Özgehan Cansu Gülcü, E. Üstün
{"title":"A simple theoretical approach to converging of Myoglobin-Assay with different pH values","authors":"Özgehan Cansu Gülcü, E. Üstün","doi":"10.2478/acs-2021-0012","DOIUrl":null,"url":null,"abstract":"Abstract Many metal carbonyl complexes have been synthesized and analyzed as CO-releasing agents. As in many bioactivity assays, differences between in-vitro and in-vivo studies in Myoglobin Assay have been observed. Adjustment of in-vitro conditions to in-vivo conditions is one way to overcoming this problem. Changing the conditions of each in-vivo assay is not possible considering the available grant, material, and labor facilities. In-silico methods are suitable as they provide better in-vitro conditions before experimental procedures. A method which is easy to employ on a basic computer could be more suitable to observe the assay convergence. In this study, global reactivity descriptors were used as an approach to investigate pH differences in myoglobin assay. Global reactivity descriptors of the molecules were compared with myoglobin assay results at different pH values and molecular docking results performed with optimized molecules in different solvents. The following complexes were studied: [Mn(CO)3(bpy)(L)]PF6 (bpy: 2,2-bipyridyl, L: benzylbenzimidazole, 4-chlorobenzylbenzimidazole).","PeriodicalId":7088,"journal":{"name":"Acta Chimica Slovaca","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Chimica Slovaca","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/acs-2021-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Many metal carbonyl complexes have been synthesized and analyzed as CO-releasing agents. As in many bioactivity assays, differences between in-vitro and in-vivo studies in Myoglobin Assay have been observed. Adjustment of in-vitro conditions to in-vivo conditions is one way to overcoming this problem. Changing the conditions of each in-vivo assay is not possible considering the available grant, material, and labor facilities. In-silico methods are suitable as they provide better in-vitro conditions before experimental procedures. A method which is easy to employ on a basic computer could be more suitable to observe the assay convergence. In this study, global reactivity descriptors were used as an approach to investigate pH differences in myoglobin assay. Global reactivity descriptors of the molecules were compared with myoglobin assay results at different pH values and molecular docking results performed with optimized molecules in different solvents. The following complexes were studied: [Mn(CO)3(bpy)(L)]PF6 (bpy: 2,2-bipyridyl, L: benzylbenzimidazole, 4-chlorobenzylbenzimidazole).
一个简单的理论方法,以收敛肌红蛋白测定与不同的pH值
摘要许多金属羰基配合物已被合成并分析为CO释放剂。与许多生物活性测定一样,已经观察到肌红蛋白测定的体外和体内研究之间的差异。将体外条件调整为体内条件是克服这个问题的一种方法。考虑到可用的拨款、材料和劳动力设施,不可能改变每次体内测定的条件。硅方法是合适的,因为它们在实验程序之前提供了更好的体外条件。在基本计算机上易于使用的方法可能更适合于观察测定收敛性。在本研究中,全局反应性描述符被用作研究肌红蛋白测定中pH差异的方法。将分子的全局反应性描述符与不同pH值下的肌红蛋白测定结果以及在不同溶剂中用优化分子进行的分子对接结果进行比较。研究了以下配合物:[Mn(CO)3(bpy)(L)]PF6(bpy:2,2-联吡啶,L:苄基苯并咪唑,4-氯苄基苯并唑)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Chimica Slovaca
Acta Chimica Slovaca CHEMISTRY, MULTIDISCIPLINARY-
自引率
12.50%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信