Robust Level-Set-Based Topology Optimization Under Uncertainties Using Anchored ANOVA Petrov–Galerkin Method

IF 2.1 3区 工程技术 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Christophe Audouze, Aaron E. Klein, Adrian Butscher, Nigel Morris, P. Nair, M. Yano
{"title":"Robust Level-Set-Based Topology Optimization Under Uncertainties Using Anchored ANOVA Petrov–Galerkin Method","authors":"Christophe Audouze, Aaron E. Klein, Adrian Butscher, Nigel Morris, P. Nair, M. Yano","doi":"10.1137/22m1524722","DOIUrl":null,"url":null,"abstract":". We present a non-intrusive approach to robust structural topology optimization. Specifically, we consider optimization of mean- and variance-based robustness metrics of a linear functional output associated with the linear elasticity equation in the presence of probabilistic un- certainties in the loading and material properties. To provide an efficient approximation of higher-dimensional problems, we approximate the solution to the governing stochastic partial differential equations using the anchored ANOVA Petrov-Galerkin (AAPG) projection scheme. We then develop a non-intrusive quadrature-based formulation to evaluate the robustness metric and the associated shape derivative. The formulation is non-intrusive in the sense that it works with any level-set-based topology optimization code that can provide deterministic displacements, outputs, and shape deriva- tives for selected stochastic parameter values. We demonstrate the effectiveness of the proposed approach on various problems under loading and material uncertainties.","PeriodicalId":56064,"journal":{"name":"Siam-Asa Journal on Uncertainty Quantification","volume":"1 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siam-Asa Journal on Uncertainty Quantification","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1137/22m1524722","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

. We present a non-intrusive approach to robust structural topology optimization. Specifically, we consider optimization of mean- and variance-based robustness metrics of a linear functional output associated with the linear elasticity equation in the presence of probabilistic un- certainties in the loading and material properties. To provide an efficient approximation of higher-dimensional problems, we approximate the solution to the governing stochastic partial differential equations using the anchored ANOVA Petrov-Galerkin (AAPG) projection scheme. We then develop a non-intrusive quadrature-based formulation to evaluate the robustness metric and the associated shape derivative. The formulation is non-intrusive in the sense that it works with any level-set-based topology optimization code that can provide deterministic displacements, outputs, and shape deriva- tives for selected stochastic parameter values. We demonstrate the effectiveness of the proposed approach on various problems under loading and material uncertainties.
基于锚定方差分析Petrov-Galerkin方法的不确定鲁棒水平集拓扑优化
. 我们提出了一种非侵入式的鲁棒结构拓扑优化方法。具体来说,我们考虑了在载荷和材料特性存在概率不确定性的情况下,与线性弹性方程相关的线性函数输出的基于均值和方差的鲁棒性度量的优化。为了提供高维问题的有效近似,我们使用锚定方差分析Petrov-Galerkin (AAPG)投影方案近似控制随机偏微分方程的解。然后,我们开发了一种非侵入式的基于正交的公式来评估鲁棒性度量和相关的形状导数。该公式是非侵入性的,因为它可以与任何基于水平集的拓扑优化代码一起工作,这些代码可以为选定的随机参数值提供确定性的位移、输出和形状导数。我们证明了该方法在载荷和材料不确定性下的各种问题上的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Siam-Asa Journal on Uncertainty Quantification
Siam-Asa Journal on Uncertainty Quantification Mathematics-Statistics and Probability
CiteScore
3.70
自引率
0.00%
发文量
51
期刊介绍: SIAM/ASA Journal on Uncertainty Quantification (JUQ) publishes research articles presenting significant mathematical, statistical, algorithmic, and application advances in uncertainty quantification, defined as the interface of complex modeling of processes and data, especially characterizations of the uncertainties inherent in the use of such models. The journal also focuses on related fields such as sensitivity analysis, model validation, model calibration, data assimilation, and code verification. The journal also solicits papers describing new ideas that could lead to significant progress in methodology for uncertainty quantification as well as review articles on particular aspects. The journal is dedicated to nurturing synergistic interactions between the mathematical, statistical, computational, and applications communities involved in uncertainty quantification and related areas. JUQ is jointly offered by SIAM and the American Statistical Association.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信