An integral transform and its application in the propagation of Lorentz-Gaussian beams

Q3 Mathematics
A. Belafhal, E. M. E. Halba, T. Usman
{"title":"An integral transform and its application in the propagation of Lorentz-Gaussian beams","authors":"A. Belafhal, E. M. E. Halba, T. Usman","doi":"10.2478/cm-2021-0030","DOIUrl":null,"url":null,"abstract":"Abstract The aim of the present note is to derive an integral transform I=∫0∞xs+1e-βx2+γxMk,v(2ζx2)Jμ(χx)dx,I = \\int_0^\\infty {{x^{s + 1}}{e^{ - \\beta x}}^{2 + \\gamma x}{M_{k,v}}} \\left( {2\\zeta {x^2}} \\right)J\\mu \\left( {\\chi x} \\right)dx, involving the product of the Whittaker function Mk,ν and the Bessel function of the first kind Jµ of order µ. As a by-product, we also derive certain new integral transforms as particular cases for some special values of the parameters k and ν of the Whittaker function. Eventually, we show the application of the integral in the propagation of hollow higher-order circular Lorentz-cosh-Gaussian beams through an ABCD optical system (see, for details [13], [3]).","PeriodicalId":37836,"journal":{"name":"Communications in Mathematics","volume":"29 1","pages":"483 - 491"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/cm-2021-0030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 5

Abstract

Abstract The aim of the present note is to derive an integral transform I=∫0∞xs+1e-βx2+γxMk,v(2ζx2)Jμ(χx)dx,I = \int_0^\infty {{x^{s + 1}}{e^{ - \beta x}}^{2 + \gamma x}{M_{k,v}}} \left( {2\zeta {x^2}} \right)J\mu \left( {\chi x} \right)dx, involving the product of the Whittaker function Mk,ν and the Bessel function of the first kind Jµ of order µ. As a by-product, we also derive certain new integral transforms as particular cases for some special values of the parameters k and ν of the Whittaker function. Eventually, we show the application of the integral in the propagation of hollow higher-order circular Lorentz-cosh-Gaussian beams through an ABCD optical system (see, for details [13], [3]).
积分变换及其在洛伦兹-高斯光束传播中的应用
摘要本文的目的是导出一个积分变换I=ξ0∞xs+1e-βx2+γxMk,v(2ζx2)Jμµ阶的第一类Jµ。作为副产品,我们还导出了某些新的积分变换,作为Whittaker函数的参数k和Γ的一些特殊值的特殊情况。最后,我们展示了积分在中空高阶圆形洛伦兹-余弦-高斯光束通过ABCD光学系统传播中的应用(详见[13],[3])。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematics
Communications in Mathematics Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
26
审稿时长
45 weeks
期刊介绍: Communications in Mathematics publishes research and survey papers in all areas of pure and applied mathematics. To be acceptable for publication, the paper must be significant, original and correct. High quality review papers of interest to a wide range of scientists in mathematics and its applications are equally welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信