{"title":"Deployment analysis of composite thin-walled lenticular tubes with effect of storage time and temperature","authors":"Jinfeng DENG , Ning AN , Qilong JIA , Xiaofei MA","doi":"10.1016/j.cja.2023.05.011","DOIUrl":null,"url":null,"abstract":"<div><p>Composite Thin-walled Lenticular Tube (CTLT) is increasingly utilized in small satellites missions as a lightweight, foldable, and rollable structural material that facilitates the construction of large deployable systems. The CTLT is initially flattened and coiled around a central hub for storage before launch, during which elastic energy is stored as deformation energy, allowing it to be self-deployed on demand for use in orbit. This work presents a comprehensive investigation into the coiling, storage and deployment behaviors of CTLT that wraps around a central hub. A nonlinear explicit dynamic finite element model was developed with both deformable CTLT and rigid-bodies mechanisms including the central hub and guide rollers, as well as the complex interactions among them. The coiling mechanics characteristics such as stored strain energy and rotational moment were presented and validated against experimental data in the literature. Then, the dynamic deployment behaviors were analyzed in terms of two different deployment methods, namely, controlled deployment and free deployment. The effect of material property change during storage was also discussed through numerical experiments.</p></div>","PeriodicalId":55631,"journal":{"name":"Chinese Journal of Aeronautics","volume":"37 1","pages":"Pages 162-172"},"PeriodicalIF":5.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1000936123001632/pdfft?md5=559a124f51b20a06876ddd006755a19a&pid=1-s2.0-S1000936123001632-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Aeronautics","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1000936123001632","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Composite Thin-walled Lenticular Tube (CTLT) is increasingly utilized in small satellites missions as a lightweight, foldable, and rollable structural material that facilitates the construction of large deployable systems. The CTLT is initially flattened and coiled around a central hub for storage before launch, during which elastic energy is stored as deformation energy, allowing it to be self-deployed on demand for use in orbit. This work presents a comprehensive investigation into the coiling, storage and deployment behaviors of CTLT that wraps around a central hub. A nonlinear explicit dynamic finite element model was developed with both deformable CTLT and rigid-bodies mechanisms including the central hub and guide rollers, as well as the complex interactions among them. The coiling mechanics characteristics such as stored strain energy and rotational moment were presented and validated against experimental data in the literature. Then, the dynamic deployment behaviors were analyzed in terms of two different deployment methods, namely, controlled deployment and free deployment. The effect of material property change during storage was also discussed through numerical experiments.
期刊介绍:
Chinese Journal of Aeronautics (CJA) is an open access, peer-reviewed international journal covering all aspects of aerospace engineering. The Journal reports the scientific and technological achievements and frontiers in aeronautic engineering and astronautic engineering, in both theory and practice, such as theoretical research articles, experiment ones, research notes, comprehensive reviews, technological briefs and other reports on the latest developments and everything related to the fields of aeronautics and astronautics, as well as those ground equipment concerned.