Characterisation and development of Early Cretaceous shelf platform deposition and faulting in the Hoop area, southwestern Barents Sea—constrained by high-resolution seismic data
T. S. Faleide, I. Midtkandal, S. Planke, R. Corseri, J. Faleide, C. S. Serck, J. P. Nystuen
{"title":"Characterisation and development of Early Cretaceous shelf platform deposition and faulting in the Hoop area, southwestern Barents Sea—constrained by high-resolution seismic data","authors":"T. S. Faleide, I. Midtkandal, S. Planke, R. Corseri, J. Faleide, C. S. Serck, J. P. Nystuen","doi":"10.17850/njg99-3-7","DOIUrl":null,"url":null,"abstract":"Regional Early Cretaceous uplift of the northern Barents Sea associated with the High Arctic Large Igneous Province (HALIP) caused the development of the fluvial to open-marine depositional system, terminating in the southwestern Barents Sea. This study has established a new temporal and spatial evolution of the Lower Cretaceous deposits in the Hoop area, in particular the location and age of the intrashelf platform lobe front and subsequent block-faulting. A composite high-resolution 3D and 2.5D P-Cable and conventional 3D seismic dataset image the strata and cross-cutting faults in the Hoop area. The P-Cable data typically have a resolution of 3–7 m in the shallow subsurface, up to four times better than the conventional seismic data, contributing to a new and better mapping hence understanding of the Lower Cretaceous strata and faults. Seismic horizon and facies mapping reveal large-scale clinoforms, with present-day heights of 150–200 m and dips of 0.65–1.13°. The highresolution data furthermore display complex stratigraphic and structural features, such as small-scale clinoforms and numerous faults. The shelf platform succession is block-faulted, and the main Early Cretaceous fault activity thus postdates the arrival of the delta and platform sediments from the northwest. Detailed seismo-stratigraphic ties to the 7324/2–1 (Apollo) and 7325/1–1 (Atlantis) wells, and ties to the adjacent Fingerdjupet Subbasin, document a Barremian age for the shelf platform deposits and an Aptian?–early Albian age for the main faulting event. The faulting was likely initiated in the Aptian, but a hiatus or condensed section above the Barremian strata makes it difficult to constrain the onset of deformation in the Hoop area.","PeriodicalId":49741,"journal":{"name":"Norwegian Journal of Geology","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Norwegian Journal of Geology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.17850/njg99-3-7","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 17
Abstract
Regional Early Cretaceous uplift of the northern Barents Sea associated with the High Arctic Large Igneous Province (HALIP) caused the development of the fluvial to open-marine depositional system, terminating in the southwestern Barents Sea. This study has established a new temporal and spatial evolution of the Lower Cretaceous deposits in the Hoop area, in particular the location and age of the intrashelf platform lobe front and subsequent block-faulting. A composite high-resolution 3D and 2.5D P-Cable and conventional 3D seismic dataset image the strata and cross-cutting faults in the Hoop area. The P-Cable data typically have a resolution of 3–7 m in the shallow subsurface, up to four times better than the conventional seismic data, contributing to a new and better mapping hence understanding of the Lower Cretaceous strata and faults. Seismic horizon and facies mapping reveal large-scale clinoforms, with present-day heights of 150–200 m and dips of 0.65–1.13°. The highresolution data furthermore display complex stratigraphic and structural features, such as small-scale clinoforms and numerous faults. The shelf platform succession is block-faulted, and the main Early Cretaceous fault activity thus postdates the arrival of the delta and platform sediments from the northwest. Detailed seismo-stratigraphic ties to the 7324/2–1 (Apollo) and 7325/1–1 (Atlantis) wells, and ties to the adjacent Fingerdjupet Subbasin, document a Barremian age for the shelf platform deposits and an Aptian?–early Albian age for the main faulting event. The faulting was likely initiated in the Aptian, but a hiatus or condensed section above the Barremian strata makes it difficult to constrain the onset of deformation in the Hoop area.
期刊介绍:
The Norwegian Journal of Geology publishes high-quality, fully peer-review papers from all geoscientific disciplines. Papers are commonly based on regional studies and should emphasise the development of understanding of fundamental geological processes. More specialised papers can also be submitted, but should be written in a way that is easily understood by nonspecialists, and illustrate the progress being made within that specific topic in geosciences. We also encourage initiatives for thematic issues within the scope of the Journal.