Different Estimation Methods and Joint Condence Region for the Inverse Burr Distribution Based on Progressively First-Failure Censored Sample with Application to the Nanodroplet Data
{"title":"Different Estimation Methods and Joint Condence Region for the Inverse Burr Distribution Based on Progressively First-Failure Censored Sample with Application to the Nanodroplet Data","authors":"H. Panahi","doi":"10.1285/I20705948V12N2P341","DOIUrl":null,"url":null,"abstract":"In this article, the point and interval estimation of parameters for an in-verse Burr distribution based on progressively rst-failure censored sampleis studied. In point estimation, the maximum likelihood and Bayesian meth-ods are developed for estimating the unknown parameters. An expectation-maximization algorithm is applied for computing the maximum likelihoodestimators. The Bayes estimates relative to both the symmetric and asym-metric loss functions are provided using the Lindley's approximation andthe Metropolis-Hastings algorithm. In interval estimation, approximate andexact condence intervals with the exact condence region for the two parameters have been introduced. Moreover, the proposed methods are carriedout to a real data set contains the spreading of nanodroplet impingementonto a solid surface in order to demonstrate the applicabilities.","PeriodicalId":44770,"journal":{"name":"Electronic Journal of Applied Statistical Analysis","volume":"12 1","pages":"341-361"},"PeriodicalIF":0.6000,"publicationDate":"2019-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1285/I20705948V12N2P341","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Applied Statistical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1285/I20705948V12N2P341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, the point and interval estimation of parameters for an in-verse Burr distribution based on progressively rst-failure censored sampleis studied. In point estimation, the maximum likelihood and Bayesian meth-ods are developed for estimating the unknown parameters. An expectation-maximization algorithm is applied for computing the maximum likelihoodestimators. The Bayes estimates relative to both the symmetric and asym-metric loss functions are provided using the Lindley's approximation andthe Metropolis-Hastings algorithm. In interval estimation, approximate andexact condence intervals with the exact condence region for the two parameters have been introduced. Moreover, the proposed methods are carriedout to a real data set contains the spreading of nanodroplet impingementonto a solid surface in order to demonstrate the applicabilities.