Derivation of Nonlinear Equations for Surface of Fluid Adhering to a Moving Plate Withdrawn From Liquid Pool

Q3 Engineering
Ivan Kazachkov
{"title":"Derivation of Nonlinear Equations for Surface of Fluid Adhering to a Moving Plate Withdrawn From Liquid Pool","authors":"Ivan Kazachkov","doi":"10.37394/232013.2022.17.11","DOIUrl":null,"url":null,"abstract":"The processes of the magnetic tape producing, wire adhering, as well as many other important technological processes, include preparing some special materials’ adhering to a product surface. For a surface withdrawn from the molten metal or the other liquid material there is a problem to determine a profile of a film surface. In this paper, the mathematical model developed for simulation of the adhering process of viscous liquid film to a slowly moving plate, which is vertically withdrawn from the molten metal or the other fluid capacity. The Navier-Stokes equations for a film flow on a surface of the withdrawn plate are considered with the corresponding boundary conditions, and the polynomial approximation is used for the film flow profile. The equations, after integration across the layer of a film flow, result in the system of partial differential equations for the wavy surface ζ(t,x) of a film flow, of flow rate q(t,x) and of flow energy Q(t,x).The derived equations are used for analysis of the nonlinear film flow that determines the quality of a fluid adhering on a surface of the withdrawn plate.","PeriodicalId":39418,"journal":{"name":"WSEAS Transactions on Fluid Mechanics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS Transactions on Fluid Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232013.2022.17.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The processes of the magnetic tape producing, wire adhering, as well as many other important technological processes, include preparing some special materials’ adhering to a product surface. For a surface withdrawn from the molten metal or the other liquid material there is a problem to determine a profile of a film surface. In this paper, the mathematical model developed for simulation of the adhering process of viscous liquid film to a slowly moving plate, which is vertically withdrawn from the molten metal or the other fluid capacity. The Navier-Stokes equations for a film flow on a surface of the withdrawn plate are considered with the corresponding boundary conditions, and the polynomial approximation is used for the film flow profile. The equations, after integration across the layer of a film flow, result in the system of partial differential equations for the wavy surface ζ(t,x) of a film flow, of flow rate q(t,x) and of flow energy Q(t,x).The derived equations are used for analysis of the nonlinear film flow that determines the quality of a fluid adhering on a surface of the withdrawn plate.
从液池中抽出的运动板所附流体表面非线性方程的推导
磁带生产过程、导线粘接过程以及许多其他重要的工艺过程,包括准备一些特殊材料粘附在产品表面。对于从熔融金属或其他液体材料中取出的表面,存在确定膜表面轮廓的问题。本文建立了一个数学模型,用于模拟粘性液膜粘附在缓慢移动的板上的过程,该板是从熔融金属或其他流体容量中垂直抽出的。考虑了抽回板表面上薄膜流动的Navier-Stokes方程和相应的边界条件,并对薄膜流动剖面使用多项式近似。在薄膜流的整个层上积分后,这些方程产生了薄膜流的波状表面ζ(t,x)、流速q(t,x)和流动能量q(t,x)的偏微分方程组。导出的方程用于分析非线性膜流,该非线性膜流决定了粘附在收回板表面上的流体的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
WSEAS Transactions on Fluid Mechanics
WSEAS Transactions on Fluid Mechanics Engineering-Computational Mechanics
CiteScore
1.50
自引率
0.00%
发文量
20
期刊介绍: WSEAS Transactions on Fluid Mechanics publishes original research papers relating to the studying of fluids. We aim to bring important work to a wide international audience and therefore only publish papers of exceptional scientific value that advance our understanding of this particular area. The research presented must transcend the limits of case studies, while both experimental and theoretical studies are accepted. It is a multi-disciplinary journal and therefore its content mirrors the diverse interests and approaches of scholars involved with multiphase flow, boundary layer flow, material properties, wave modelling and related areas. We also welcome scholarly contributions from officials with government agencies, international agencies, and non-governmental organizations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信