Description of crystal defect properties in BCC Cr with extended Finnis–Sinclair potential

IF 1.7 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
L. Wei, Fei Zhou, Shuo Wang, Weixun Hao, Y. Liu, Jingchuan Zhu
{"title":"Description of crystal defect properties in BCC Cr with extended Finnis–Sinclair potential","authors":"L. Wei, Fei Zhou, Shuo Wang, Weixun Hao, Y. Liu, Jingchuan Zhu","doi":"10.1108/mmms-08-2022-0143","DOIUrl":null,"url":null,"abstract":"PurposeThe purpose of this study is to propose extended potentials and investigate the applicability of extended Finnis–Sinclair (FS) potential to Cr with the unit cell structure of body-centered cubic (BCC Cr).Design/methodology/approachThe parameters of each potential are determined by fitting the elastic constants, cohesive energy and mono-vacancy formation energy. Furthermore, the ability of the extended FS potential to describe the crystal defect properties is tested. Finally, the applicability of reproducing the thermal properties of Cr is discussed.FindingsThe internal relationship between physical properties and potential function is revealed. The mathematical relationship between physical properties and potential function is derived in detail. The extended FS potential performs well in reproducing physical properties of BCC Cr, such as elastic constants, cohesive energy, surface energy and the properties of vacancy et al. Moreover, good agreement is obtained with the experimental data for predicting the melting point, specific heat and coefficient of thermal expansion.Originality/valueIn this study, new extended potentials are proposed. The extended FS potential is able to reproduce the physical and thermal properties of BCC Cr. Therefore, the new extended potential can be used to describe the crystal defect properties of BCC Cr.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multidiscipline Modeling in Materials and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1108/mmms-08-2022-0143","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

PurposeThe purpose of this study is to propose extended potentials and investigate the applicability of extended Finnis–Sinclair (FS) potential to Cr with the unit cell structure of body-centered cubic (BCC Cr).Design/methodology/approachThe parameters of each potential are determined by fitting the elastic constants, cohesive energy and mono-vacancy formation energy. Furthermore, the ability of the extended FS potential to describe the crystal defect properties is tested. Finally, the applicability of reproducing the thermal properties of Cr is discussed.FindingsThe internal relationship between physical properties and potential function is revealed. The mathematical relationship between physical properties and potential function is derived in detail. The extended FS potential performs well in reproducing physical properties of BCC Cr, such as elastic constants, cohesive energy, surface energy and the properties of vacancy et al. Moreover, good agreement is obtained with the experimental data for predicting the melting point, specific heat and coefficient of thermal expansion.Originality/valueIn this study, new extended potentials are proposed. The extended FS potential is able to reproduce the physical and thermal properties of BCC Cr. Therefore, the new extended potential can be used to describe the crystal defect properties of BCC Cr.
扩展finni - sinclair电位的BCC Cr晶体缺陷性质描述
目的提出扩展电位,探讨扩展Finnis-Sinclair (FS)电位对体心立方(BCC) Cr的适用性。设计/方法/方法通过拟合弹性常数、内聚能和单空位形成能来确定每个势的参数。此外,还测试了扩展FS势描述晶体缺陷特性的能力。最后,讨论了再现Cr热性能的适用性。发现揭示了物理性质与势函数之间的内在联系。详细推导了物理性质与势函数之间的数学关系。扩展FS势能较好地再现BCC Cr的弹性常数、结合能、表面能和空位性质等物理性质。对熔点、比热和热膨胀系数的预测结果与实验结果吻合较好。在本研究中,提出了新的扩展潜力。扩展的FS势能够再现BCC Cr的物理和热性质,因此,新的扩展势可以用来描述BCC Cr的晶体缺陷性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
5.00%
发文量
60
期刊介绍: Multidiscipline Modeling in Materials and Structures is published by Emerald Group Publishing Limited from 2010
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信