Set-valued minimax fractional programming problems under ρ-cone arcwise connectedness

Q4 Engineering
K. Das
{"title":"Set-valued minimax fractional programming problems under ρ-cone arcwise connectedness","authors":"K. Das","doi":"10.2478/candc-2022-0004","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we consider a set-valued minimax fractional programming problem (MFP), where the objective as well as constraint maps are set-valued. We introduce the notion of ρ-cone arcwise connectedness of set-valued maps as a generalization of cone arcwise connected set-valued maps. We establish the sufficient Karush-Kuhn-Tucker (KKT) conditions for the existence of minimizers of the problem (MFP) under ρ-cone arcwise connectedness assumption. Further, we study the Mond-Weir (MWD), Wolfe (WD), and mixed (MD) types of duality models and prove the corresponding weak, strong, and converse duality theorems between the primal (MFP) and the corresponding dual problems under ρ-cone arcwise connectedness assumption.","PeriodicalId":55209,"journal":{"name":"Control and Cybernetics","volume":"51 1","pages":"43 - 69"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/candc-2022-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this paper, we consider a set-valued minimax fractional programming problem (MFP), where the objective as well as constraint maps are set-valued. We introduce the notion of ρ-cone arcwise connectedness of set-valued maps as a generalization of cone arcwise connected set-valued maps. We establish the sufficient Karush-Kuhn-Tucker (KKT) conditions for the existence of minimizers of the problem (MFP) under ρ-cone arcwise connectedness assumption. Further, we study the Mond-Weir (MWD), Wolfe (WD), and mixed (MD) types of duality models and prove the corresponding weak, strong, and converse duality theorems between the primal (MFP) and the corresponding dual problems under ρ-cone arcwise connectedness assumption.
ρ-锥弧连通下的集值极大极小分数规划问题
摘要本文考虑一个集值极小极大分式规划问题,其中目标映射和约束映射都是集值的。作为锥弧连通集值映射的推广,我们引入了集值映射ρ-锥弧连通性的概念。在ρ-锥弧连通性假设下,我们建立了问题极小值存在的充分Karush-Kuhn-Tucker(KKT)条件。此外,我们研究了Mond-Weir(MWD)、Wolfe(WD)和混合(MD)类型的对偶模型,并在ρ-锥弧连通性假设下证明了原始(MFP)和相应对偶问题之间相应的弱、强和逆对偶定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Control and Cybernetics
Control and Cybernetics 工程技术-计算机:控制论
CiteScore
0.50
自引率
0.00%
发文量
0
期刊介绍: The field of interest covers general concepts, theories, methods and techniques associated with analysis, modelling, control and management in various systems (e.g. technological, economic, ecological, social). The journal is particularly interested in results in the following areas of research: Systems and control theory: general systems theory, optimal cotrol, optimization theory, data analysis, learning, artificial intelligence, modelling & identification, game theory, multicriteria optimisation, decision and negotiation methods, soft approaches: stochastic and fuzzy methods, computer science,
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信