{"title":"Hierarchical Dirichlet process and relative entropy","authors":"S. Feng","doi":"10.1214/23-ecp511","DOIUrl":null,"url":null,"abstract":"The Hierarchical Dirichlet process is a discrete random measure serving as an im-portant prior in Bayesian non-parametrics. It is motivated with the study of groups of clustered data. Each group is modelled through a level two Dirichlet process and all groups share the same base distribution which itself is a drawn from a level one Dirichlet process. It has two concentration parameters with one at each level. The main results of the paper are the law of large numbers and large deviations for the hierarchical Dirichlet process and its mass when both concentration parameters converge to infinity. The large deviation rate functions are identified explicitly. The rate function for the hierarchical Dirichlet process consists of two terms corresponding to the relative entropies at each level. It is less than the rate function for the Dirichlet process, which reflects the fact that the number of clusters under the hierarchical Dirichlet process has a slower growth rate than under the Dirichlet process.","PeriodicalId":50543,"journal":{"name":"Electronic Communications in Probability","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Communications in Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-ecp511","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
The Hierarchical Dirichlet process is a discrete random measure serving as an im-portant prior in Bayesian non-parametrics. It is motivated with the study of groups of clustered data. Each group is modelled through a level two Dirichlet process and all groups share the same base distribution which itself is a drawn from a level one Dirichlet process. It has two concentration parameters with one at each level. The main results of the paper are the law of large numbers and large deviations for the hierarchical Dirichlet process and its mass when both concentration parameters converge to infinity. The large deviation rate functions are identified explicitly. The rate function for the hierarchical Dirichlet process consists of two terms corresponding to the relative entropies at each level. It is less than the rate function for the Dirichlet process, which reflects the fact that the number of clusters under the hierarchical Dirichlet process has a slower growth rate than under the Dirichlet process.
期刊介绍:
The Electronic Communications in Probability (ECP) publishes short research articles in probability theory. Its sister journal, the Electronic Journal of Probability (EJP), publishes full-length articles in probability theory. Short papers, those less than 12 pages, should be submitted to ECP first. EJP and ECP share the same editorial board, but with different Editors in Chief.