Positive semigroups and generalized Frobenius numbers over totally real number fields

Q4 Mathematics
L. Fukshansky, Yingqi Shi
{"title":"Positive semigroups and generalized Frobenius numbers over totally real number fields","authors":"L. Fukshansky, Yingqi Shi","doi":"10.2140/moscow.2020.9.29","DOIUrl":null,"url":null,"abstract":"Frobenius problem and its many generalizations have been extensively studied in several areas of mathematics. We study semigroups of totally positive algebraic integers in totally real number fields, defining analogues of the Frobenius numbers in this context. We use a geometric framework recently introduced by Aliev, De Loera and Louveaux to produce upper bounds on these Frobenius numbers in terms of a certain height function. We discuss some properties of this function, relating it to absolute Weil height and obtaining a lower bound in the spirit of Lehmer's conjecture for algebraic vectors satisfying some special conditions. We also use a result of Borosh and Treybig to obtain bounds on the size of representations and number of elements of bounded height in such positive semigroups of totally real algebraic integers.","PeriodicalId":36590,"journal":{"name":"Moscow Journal of Combinatorics and Number Theory","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2140/moscow.2020.9.29","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow Journal of Combinatorics and Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/moscow.2020.9.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

Abstract

Frobenius problem and its many generalizations have been extensively studied in several areas of mathematics. We study semigroups of totally positive algebraic integers in totally real number fields, defining analogues of the Frobenius numbers in this context. We use a geometric framework recently introduced by Aliev, De Loera and Louveaux to produce upper bounds on these Frobenius numbers in terms of a certain height function. We discuss some properties of this function, relating it to absolute Weil height and obtaining a lower bound in the spirit of Lehmer's conjecture for algebraic vectors satisfying some special conditions. We also use a result of Borosh and Treybig to obtain bounds on the size of representations and number of elements of bounded height in such positive semigroups of totally real algebraic integers.
全实数域上的正半群和广义Frobenius数
Frobenius问题及其许多推广已经在数学的几个领域得到了广泛的研究。我们研究了全实数域中的全正代数整数的半群,在本文中定义了Frobenius数的类似物。我们使用Aliev、De Loera和Louveaux最近引入的几何框架,在一定的高度函数方面产生这些Frobenius数的上界。我们讨论了这个函数的一些性质,将它与绝对Weil高度联系起来,并根据Lehmer猜想的精神得到了满足某些特殊条件的代数向量的下界。我们还利用Borosh和Treybig的一个结果得到了全实代数整数的正半群中有界高度的表示大小和元素数的界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Moscow Journal of Combinatorics and Number Theory
Moscow Journal of Combinatorics and Number Theory Mathematics-Algebra and Number Theory
CiteScore
0.80
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信