K. Yasukawa, E. Tanaka, T. Miyazaki, B. Vaglarov, Q. Chang, K. Nakamura, J. Ohta, K. Fujinaga, H. Iwamori, Y. Kato
{"title":"High‐Dimensional Chemostratigraphy of Pelagic Clay in the Western North Pacific Ocean Revealed via an Unsupervised Clustering Approach","authors":"K. Yasukawa, E. Tanaka, T. Miyazaki, B. Vaglarov, Q. Chang, K. Nakamura, J. Ohta, K. Fujinaga, H. Iwamori, Y. Kato","doi":"10.1029/2023PA004644","DOIUrl":null,"url":null,"abstract":"Pelagic clay constitutes massive and apparently uniform lithology that limits the stratigraphic correlation between neighboring sediment core samples. Recent studies on the pelagic clay in the western North Pacific Ocean demonstrated that the bulk chemical composition of sediments constitutes multielemental chemostratigraphy, deducing the correlation between visibly featureless pelagic clay layers across several cores. However, this heuristic approach utilized only a few elements. Therefore, this study employed multivariate statistical techniques, including k‐means cluster analysis, to analyze the chemical composition data set of 1,646 samples × 41 elements of the western North Pacific pelagic clay. The pelagic clay was classified into 10 clusters systematically aligned from the seafloor to the depth in a specific order, constituting stratigraphic units that reflected the high‐dimensional geochemical features of these 41 elements. This finding strongly supports the statistical robustness of the latent chemostratigraphy in the western North Pacific pelagic clay. Additionally, we performed Sr–Nd–Pb isotope analyses of the detrital silicate fractions of the centroid samples representing each cluster. The multi‐isotopic features of the detrital fraction varied from a mixture of North American and Asian dusts to a predominance of Asian dust superimposed by volcanic inputs. This secular variation in the matrix components is attributable to the northwestward motion of the Pacific Plate and the time‐varying influence of arc volcanism throughout sedimentary history. The proposed integrated approach of multivariate statistical and isotopic analyses effectively extracted the essential information hidden in the pelagic clay, which may postulate a new protocol for paleoceanographic reconstructions targeting the pelagic realm.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paleoceanography and Paleoclimatology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2023PA004644","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Pelagic clay constitutes massive and apparently uniform lithology that limits the stratigraphic correlation between neighboring sediment core samples. Recent studies on the pelagic clay in the western North Pacific Ocean demonstrated that the bulk chemical composition of sediments constitutes multielemental chemostratigraphy, deducing the correlation between visibly featureless pelagic clay layers across several cores. However, this heuristic approach utilized only a few elements. Therefore, this study employed multivariate statistical techniques, including k‐means cluster analysis, to analyze the chemical composition data set of 1,646 samples × 41 elements of the western North Pacific pelagic clay. The pelagic clay was classified into 10 clusters systematically aligned from the seafloor to the depth in a specific order, constituting stratigraphic units that reflected the high‐dimensional geochemical features of these 41 elements. This finding strongly supports the statistical robustness of the latent chemostratigraphy in the western North Pacific pelagic clay. Additionally, we performed Sr–Nd–Pb isotope analyses of the detrital silicate fractions of the centroid samples representing each cluster. The multi‐isotopic features of the detrital fraction varied from a mixture of North American and Asian dusts to a predominance of Asian dust superimposed by volcanic inputs. This secular variation in the matrix components is attributable to the northwestward motion of the Pacific Plate and the time‐varying influence of arc volcanism throughout sedimentary history. The proposed integrated approach of multivariate statistical and isotopic analyses effectively extracted the essential information hidden in the pelagic clay, which may postulate a new protocol for paleoceanographic reconstructions targeting the pelagic realm.
期刊介绍:
Paleoceanography and Paleoclimatology (PALO) publishes papers dealing with records of past environments, biota and climate. Understanding of the Earth system as it was in the past requires the employment of a wide range of approaches including marine and lacustrine sedimentology and speleothems; ice sheet formation and flow; stable isotope, trace element, and organic geochemistry; paleontology and molecular paleontology; evolutionary processes; mineralization in organisms; understanding tree-ring formation; seismic stratigraphy; physical, chemical, and biological oceanography; geochemical, climate and earth system modeling, and many others. The scope of this journal is regional to global, rather than local, and includes studies of any geologic age (Precambrian to Quaternary, including modern analogs). Within this framework, papers on the following topics are to be included: chronology, stratigraphy (where relevant to correlation of paleoceanographic events), paleoreconstructions, paleoceanographic modeling, paleocirculation (deep, intermediate, and shallow), paleoclimatology (e.g., paleowinds and cryosphere history), global sediment and geochemical cycles, anoxia, sea level changes and effects, relations between biotic evolution and paleoceanography, biotic crises, paleobiology (e.g., ecology of “microfossils” used in paleoceanography), techniques and approaches in paleoceanographic inferences, and modern paleoceanographic analogs, and quantitative and integrative analysis of coupled ocean-atmosphere-biosphere processes. Paleoceanographic and Paleoclimate studies enable us to use the past in order to gain information on possible future climatic and biotic developments: the past is the key to the future, just as much and maybe more than the present is the key to the past.