Existence of normalized solutions for the planar Schrödinger-Poisson system with exponential critical nonlinearity

IF 1.8 4区 数学 Q1 MATHEMATICS
C. O. Alves, E. D. S. Boer, O. Miyagaki
{"title":"Existence of normalized solutions for the planar Schrödinger-Poisson system with exponential critical nonlinearity","authors":"C. O. Alves, E. D. S. Boer, O. Miyagaki","doi":"10.57262/die036-1112-947","DOIUrl":null,"url":null,"abstract":"In the present work we are concerned with the existence of normalized solutions to the following Schr\\\"odinger-Poisson System $$ \\left\\{ \\begin{array}{ll} -\\Delta u + \\lambda u + \\mu (\\ln|\\cdot|\\ast |u|^{2})u = f(u) \\textrm{ \\ in \\ } \\mathbb{R}^2 , \\\\ \\intR |u(x)|^2 dx = c,\\ c>0 , \\end{array} \\right. $$ for $\\mu \\in \\R $ and a nonlinearity $f$ with exponential critical growth. Here $ \\lambda\\in \\R$ stands as a Lagrange multiplier and it is part of the unknown. Our main results extend and/or complement some results found in \\cite{Ji} and \\cite{[cjj]}.","PeriodicalId":50581,"journal":{"name":"Differential and Integral Equations","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential and Integral Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.57262/die036-1112-947","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

In the present work we are concerned with the existence of normalized solutions to the following Schr\"odinger-Poisson System $$ \left\{ \begin{array}{ll} -\Delta u + \lambda u + \mu (\ln|\cdot|\ast |u|^{2})u = f(u) \textrm{ \ in \ } \mathbb{R}^2 , \\ \intR |u(x)|^2 dx = c,\ c>0 , \end{array} \right. $$ for $\mu \in \R $ and a nonlinearity $f$ with exponential critical growth. Here $ \lambda\in \R$ stands as a Lagrange multiplier and it is part of the unknown. Our main results extend and/or complement some results found in \cite{Ji} and \cite{[cjj]}.
具有指数临界非线性的平面Schrödinger-Poisson系统归一化解的存在性
在本工作中,我们关注以下Schr“odinger-Poisson系统$$\left\{\bbegin{array}{ll}-\Delta u+\lambda u+\mu(\ln|\cdot|\ast|u|^{2})u=f(u)\textrm{\In\}\mathbb{R}^2,\\intR|u(x)|^2 dx=c,\c>0,\end{array}\right。$$对于$\mu\in\R$和具有指数临界增长的非线性$f$。这里$\lambda\in\R$代表拉格朗日乘数,它是未知的一部分。我们的主要结果扩展和/或补充了在\cite{Ji}和\cite{[cjjj]}中发现的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Differential and Integral Equations
Differential and Integral Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.40
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Differential and Integral Equations will publish carefully selected research papers on mathematical aspects of differential and integral equations and on applications of the mathematical theory to issues arising in the sciences and in engineering. Papers submitted to this journal should be correct, new, and of interest to a substantial number of mathematicians working in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信