Computation of Hopf Galois structures on low degree separable extensions and classification of those for degrees $p^2$ and $2p$

Pub Date : 2018-02-26 DOI:10.5565/publmat6412005
T. Crespo, Marta Salguero
{"title":"Computation of Hopf Galois structures on low degree separable extensions and classification of those for degrees $p^2$ and $2p$","authors":"T. Crespo, Marta Salguero","doi":"10.5565/publmat6412005","DOIUrl":null,"url":null,"abstract":"A Hopf Galois structure on a finite field extension $L/K$ is a pair $(H,\\mu)$, where $H$ is a finite cocommutative $K$-Hopf algebra and $\\mu$ a Hopf action. In this paper we present a program written in the computational algebra system Magma which gives all Hopf Galois structures on separable field extensions of degree up to eleven and several properties of those. Besides, we exhibit several results on Hopf Galois structures inspired by the program output. We prove that if $(H,\\mu)$ is an almost classically Hopf Galois structure, then it is the unique Hopf Galois structure with underlying Hopf algebra $H$, up to isomorphism. For $p$ an odd prime, we prove that a separable extension of degree $p^2$ may have only one type of Hopf Galois structure and determine those of cyclic type; we determine as well the Hopf Galois structures on separable extensions of degree $2p$. We highlight the richness of the results obtained for extensions of degree 8 by computing an explicit example and presenting some tables which summarizes these results.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5565/publmat6412005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

A Hopf Galois structure on a finite field extension $L/K$ is a pair $(H,\mu)$, where $H$ is a finite cocommutative $K$-Hopf algebra and $\mu$ a Hopf action. In this paper we present a program written in the computational algebra system Magma which gives all Hopf Galois structures on separable field extensions of degree up to eleven and several properties of those. Besides, we exhibit several results on Hopf Galois structures inspired by the program output. We prove that if $(H,\mu)$ is an almost classically Hopf Galois structure, then it is the unique Hopf Galois structure with underlying Hopf algebra $H$, up to isomorphism. For $p$ an odd prime, we prove that a separable extension of degree $p^2$ may have only one type of Hopf Galois structure and determine those of cyclic type; we determine as well the Hopf Galois structures on separable extensions of degree $2p$. We highlight the richness of the results obtained for extensions of degree 8 by computing an explicit example and presenting some tables which summarizes these results.
分享
查看原文
低次可分扩展上Hopf伽罗瓦结构的计算及p^2$和p^2$的分类
有限域扩展$L/K$上的Hopf伽罗瓦结构是一对$(H,\mu)$,其中$H$是一个有限协交换的$K$-Hopf代数,$\mu$是一个Hopf作用。本文给出了一个用计算代数系统Magma编写的程序,该程序给出了可分离域扩展上的所有Hopf伽罗瓦结构及其若干性质。此外,我们还展示了受程序输出启发的Hopf伽罗瓦结构的几个结果。证明了如果$(H,\mu)$是一个几乎经典的Hopf伽罗瓦结构,那么它是唯一的Hopf伽罗瓦结构,其底层Hopf代数$H$,直到同构。对于$p$一个奇素数,证明了$p^2$的可分扩展只能有一种类型的Hopf伽罗瓦结构,并确定了循环类型的Hopf伽罗瓦结构;我们还确定了阶$2p$的可分离扩展上的Hopf伽罗瓦结构。我们通过计算一个显式的例子,并给出一些总结这些结果的表格,突出了得到的8次扩展结果的丰富性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信