{"title":"On a new class of fractional calculus of variations and related fractional differential equations","authors":"Xiaobing H. Feng, Mitchell Sutton","doi":"10.57262/die035-0506-299","DOIUrl":null,"url":null,"abstract":"This paper is concerned with analyzing a class of fractional calculus of variations problems and their associated Euler-Lagrange (fractional differential) equations. Unlike the existing fractional calculus of variations which is based on the classical notion of fractional derivatives, the fractional calculus of variations considered in this paper is based on a newly developed notion of weak fractional derivatives and their associated fractional order Sobolev spaces. Since fractional derivatives are direction-dependent, using one-sided fractional derivatives and their combinations leads to new types of calculus of variations and fractional differential equations as well as nonstandard Neumann boundary operators. The primary objective of this paper is to establish the well-posedness and regularities for a class of fractional calculus of variations problems and their Euler-Lagrange (fractional differential) equations. This is achieved first for one-sided Dirichlet energy functionals which lead to one-sided fractional Laplace equations, then for more general energy functionals which give rise to more general fractional differential equations.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.57262/die035-0506-299","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
This paper is concerned with analyzing a class of fractional calculus of variations problems and their associated Euler-Lagrange (fractional differential) equations. Unlike the existing fractional calculus of variations which is based on the classical notion of fractional derivatives, the fractional calculus of variations considered in this paper is based on a newly developed notion of weak fractional derivatives and their associated fractional order Sobolev spaces. Since fractional derivatives are direction-dependent, using one-sided fractional derivatives and their combinations leads to new types of calculus of variations and fractional differential equations as well as nonstandard Neumann boundary operators. The primary objective of this paper is to establish the well-posedness and regularities for a class of fractional calculus of variations problems and their Euler-Lagrange (fractional differential) equations. This is achieved first for one-sided Dirichlet energy functionals which lead to one-sided fractional Laplace equations, then for more general energy functionals which give rise to more general fractional differential equations.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.