{"title":"Progress of Deep Resources Exploration and Mining (DREAM) program in China: Critical minerals","authors":"S. Dong, Qi Zhou, Xuanhua Chen, W. Shi","doi":"10.1190/tle42040256.1","DOIUrl":null,"url":null,"abstract":"China launched the Deep Resources Exploration and Mining (DREAM) program in 2016. Since then, the program has made significant progress in the exploration of critical minerals, such as rare earth, rare, and rare scattered metals. A “five-in-one” model, based on climate, landform, parent rocks, carrier minerals, and pH values of weathering crust, has been established for rare earth prospecting in South China. It has led to a major breakthrough in the discovery of a new type of ion-adsorption rare earth deposit in the weathered crust of low-grade metamorphic rocks in southern Jiangxi, South China. A pegmatite beryllium (Be), skarn beryllium-tungsten (Be-W), cassiterite sulfide tin-tungsten-beryllium (Sn-W-Be), independent fluorite, and lead-zinc (Pb-Zn) vein five-in-one model was developed for the prospecting of rare metals such as Be and W and polymetals in the Zhaxikang-Cuonadong ore-concentrated area of the eastern Himalayas. A series of metallogenic models has been proposed for the investigation of lithium (Li) resources, leading to important breakthroughs in the prospecting of large to superlarge Li deposits in the Jiajika (western Sichuan), Dahongliutan (southwestern Xinjiang), and Xiaoshiqiao (central Yunnan) ore fields. Meanwhile, the DREAM program has achieved significant advancements in its knowledge of the ultranormal enrichment of indium, germanium, gallium, niobium, and rare earth elements in the western Yangtze block, Southwest China.","PeriodicalId":35661,"journal":{"name":"Leading Edge","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Leading Edge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1190/tle42040256.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
China launched the Deep Resources Exploration and Mining (DREAM) program in 2016. Since then, the program has made significant progress in the exploration of critical minerals, such as rare earth, rare, and rare scattered metals. A “five-in-one” model, based on climate, landform, parent rocks, carrier minerals, and pH values of weathering crust, has been established for rare earth prospecting in South China. It has led to a major breakthrough in the discovery of a new type of ion-adsorption rare earth deposit in the weathered crust of low-grade metamorphic rocks in southern Jiangxi, South China. A pegmatite beryllium (Be), skarn beryllium-tungsten (Be-W), cassiterite sulfide tin-tungsten-beryllium (Sn-W-Be), independent fluorite, and lead-zinc (Pb-Zn) vein five-in-one model was developed for the prospecting of rare metals such as Be and W and polymetals in the Zhaxikang-Cuonadong ore-concentrated area of the eastern Himalayas. A series of metallogenic models has been proposed for the investigation of lithium (Li) resources, leading to important breakthroughs in the prospecting of large to superlarge Li deposits in the Jiajika (western Sichuan), Dahongliutan (southwestern Xinjiang), and Xiaoshiqiao (central Yunnan) ore fields. Meanwhile, the DREAM program has achieved significant advancements in its knowledge of the ultranormal enrichment of indium, germanium, gallium, niobium, and rare earth elements in the western Yangtze block, Southwest China.
期刊介绍:
THE LEADING EDGE complements GEOPHYSICS, SEG"s peer-reviewed publication long unrivalled as the world"s most respected vehicle for dissemination of developments in exploration and development geophysics. TLE is a gateway publication, introducing new geophysical theory, instrumentation, and established practices to scientists in a wide range of geoscience disciplines. Most material is presented in a semitechnical manner that minimizes mathematical theory and emphasizes practical applications. TLE also serves as SEG"s publication venue for official society business.