The Impact of the Coronavirus (COVID-19) Infection on the Drug-Metabolizing Enzymes Cytochrome P450s.

Imadeldin Elfaki
{"title":"The Impact of the Coronavirus (COVID-19) Infection on the Drug-Metabolizing Enzymes Cytochrome P450s.","authors":"Imadeldin Elfaki","doi":"10.2174/1872312815666220331142046","DOIUrl":null,"url":null,"abstract":"<p><p>Coronaviruses cause disease in human and animals. In 2019 a novel coronavirus was first characterized in Wuhan, China. It causes acute respiratory disease and designated the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or COVID-19. The COVID-19 spread to all cities of China, and in 2020 to the whole world. Patients with COVID-19 may recover without medical treatment. However, some patients need medical care. The Cytochrome p450s (CYP450s) are large superfamily of enzymes catalyze the metabolism of endogenous substrates and xenobiotics. CYP450s catalyze the biotransformation of 80% of the drug in clinical use. The CYP450 present in liver, lungs, intestine and other tissues. COVID-19 has been reported to decrease the activity of certain isoforms of CYP450s in an isoform specific manner. Furthermore, the COVID-19 infection decreases the liver functions including the drug clearance or detoxification medicated by the CYP450s. The healthcare providers should be aware of this disease-drug interaction when prescribing drugs for treatment of COVID-19 and other comorbidities.</p>","PeriodicalId":11339,"journal":{"name":"Drug metabolism letters","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug metabolism letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1872312815666220331142046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Coronaviruses cause disease in human and animals. In 2019 a novel coronavirus was first characterized in Wuhan, China. It causes acute respiratory disease and designated the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or COVID-19. The COVID-19 spread to all cities of China, and in 2020 to the whole world. Patients with COVID-19 may recover without medical treatment. However, some patients need medical care. The Cytochrome p450s (CYP450s) are large superfamily of enzymes catalyze the metabolism of endogenous substrates and xenobiotics. CYP450s catalyze the biotransformation of 80% of the drug in clinical use. The CYP450 present in liver, lungs, intestine and other tissues. COVID-19 has been reported to decrease the activity of certain isoforms of CYP450s in an isoform specific manner. Furthermore, the COVID-19 infection decreases the liver functions including the drug clearance or detoxification medicated by the CYP450s. The healthcare providers should be aware of this disease-drug interaction when prescribing drugs for treatment of COVID-19 and other comorbidities.

冠状病毒感染对药物代谢酶细胞色素p450的影响
冠状病毒会导致人类和动物疾病。2019年,新型冠状病毒首次在中国武汉出现特征。它会导致急性呼吸道疾病,并被指定为严重急性呼吸道综合征冠状病毒2(SARS-CoV-2)或新冠肺炎。新冠肺炎蔓延至中国所有城市,2020年蔓延至全世界。新冠肺炎患者可能在不接受医疗治疗的情况下康复。然而,有些病人需要医疗护理。细胞色素p450(CYP450)是一个催化内源性底物和外源性物质代谢的大型酶超家族。CYP450在临床应用中催化80%的药物的生物转化。CYP450存在于肝、肺、肠和其他组织中。据报道,新冠肺炎以亚型特异性方式降低CYP450的某些亚型的活性。此外,新冠肺炎感染降低了肝功能,包括CYP450药物的药物清除或解毒。医疗保健提供者在开具治疗新冠肺炎和其他合并症的药物时,应意识到这种疾病与药物的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Drug metabolism letters
Drug metabolism letters Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
自引率
0.00%
发文量
12
期刊介绍: Drug Metabolism Letters publishes letters and research articles on major advances in all areas of drug metabolism and disposition. The emphasis is on publishing quality papers very rapidly by taking full advantage of the Internet technology both for the submission and review of manuscripts. The journal covers the following areas: In vitro systems including CYP-450; enzyme induction and inhibition; drug-drug interactions and enzyme kinetics; pharmacokinetics, toxicokinetics, species scaling and extrapolations; P-glycoprotein and transport carriers; target organ toxicity and interindividual variability; drug metabolism and disposition studies; extrahepatic metabolism; phase I and phase II metabolism; recent developments for the identification of drug metabolites.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信