The Asymptotic Structure of the Centred Hyperbolic 2-Monopole Moduli Space

IF 0.9 3区 物理与天体物理 Q2 MATHEMATICS
G. Franchetti, C. Ross
{"title":"The Asymptotic Structure of the Centred Hyperbolic 2-Monopole Moduli Space","authors":"G. Franchetti, C. Ross","doi":"10.3842/SIGMA.2023.043","DOIUrl":null,"url":null,"abstract":"We construct an asymptotic metric on the moduli space of two centred hyperbolic monopoles by working in the point particle approximation, that is treating well-separated monopoles as point particles with an electric, magnetic and scalar charge and re-interpreting the dynamics of the 2-particle system as geodesic motion with respect to some metric. The corresponding analysis in the Euclidean case famously yields the negative mass Taub-NUT metric, which asymptotically approximates the L2 metric on the moduli space of two Euclidean monopoles, the Atiyah-Hitchin metric. An important difference with the Euclidean case is that, due to the absence of Galilean symmetry, in the hyperbolic case it is not possible to factor out the centre of mass motion. Nevertheless we show that we can consistently restrict to a 3-dimensional configuration space by considering antipodal configurations. In complete parallel with the Euclidean case, the metric that we obtain is then the hyperbolic analogue of negative mass Taub-NUT. We also show how the metric obtained is related to the asymptotic form of a hyperbolic analogue of the Atiyah-Hitchin metric constructed by Hitchin.","PeriodicalId":49453,"journal":{"name":"Symmetry Integrability and Geometry-Methods and Applications","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry Integrability and Geometry-Methods and Applications","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3842/SIGMA.2023.043","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We construct an asymptotic metric on the moduli space of two centred hyperbolic monopoles by working in the point particle approximation, that is treating well-separated monopoles as point particles with an electric, magnetic and scalar charge and re-interpreting the dynamics of the 2-particle system as geodesic motion with respect to some metric. The corresponding analysis in the Euclidean case famously yields the negative mass Taub-NUT metric, which asymptotically approximates the L2 metric on the moduli space of two Euclidean monopoles, the Atiyah-Hitchin metric. An important difference with the Euclidean case is that, due to the absence of Galilean symmetry, in the hyperbolic case it is not possible to factor out the centre of mass motion. Nevertheless we show that we can consistently restrict to a 3-dimensional configuration space by considering antipodal configurations. In complete parallel with the Euclidean case, the metric that we obtain is then the hyperbolic analogue of negative mass Taub-NUT. We also show how the metric obtained is related to the asymptotic form of a hyperbolic analogue of the Atiyah-Hitchin metric constructed by Hitchin.
中心双曲2-单极模空间的渐近结构
通过点粒子近似,我们在两个中心双曲单极子的模空间上构造了一个渐近度量,即将良好分离的单极子视为具有电、磁和标量电荷的点粒子,并将两粒子系统的动力学重新解释为关于某个度量的测地运动。欧几里得情况下的相应分析得出了著名的负质量Taub NUT度量,它渐近逼近两个欧几里得单极子模空间上的L2度量,即Atiyah Hitchin度量。与欧几里得情况的一个重要区别是,由于缺乏伽利略对称性,在双曲情况下,不可能考虑质心运动。然而,我们证明,通过考虑对足构型,我们可以一致地将其限制在三维构型空间。在与欧几里得情况完全平行的情况下,我们获得的度量是负质量Taub NUT的双曲模拟。我们还展示了所获得的度量如何与Hitchin构造的Atiyah Hitchin度量的双曲类似的渐近形式相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
87
审稿时长
4-8 weeks
期刊介绍: Scope Geometrical methods in mathematical physics Lie theory and differential equations Classical and quantum integrable systems Algebraic methods in dynamical systems and chaos Exactly and quasi-exactly solvable models Lie groups and algebras, representation theory Orthogonal polynomials and special functions Integrable probability and stochastic processes Quantum algebras, quantum groups and their representations Symplectic, Poisson and noncommutative geometry Algebraic geometry and its applications Quantum field theories and string/gauge theories Statistical physics and condensed matter physics Quantum gravity and cosmology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信