Optimizing curing agent ratios for high-performance thermosetting phthalonitrile-based glass fibers

IF 1.9 4区 材料科学 Q3 Materials Science
Joonkee Lee, E. Jeon, J. Song, Yujin Son, Jaeho Choi
{"title":"Optimizing curing agent ratios for high-performance thermosetting phthalonitrile-based glass fibers","authors":"Joonkee Lee, E. Jeon, J. Song, Yujin Son, Jaeho Choi","doi":"10.1515/secm-2022-0210","DOIUrl":null,"url":null,"abstract":"Abstract Phthalonitrile (PN) is a highly promising material in the field of high-performance thermosetting polymers due to its ability to maintain its properties even at extremely high temperatures. The goal of this study was to investigate the effects of varying curing agents on the thermal properties of cured PN resin. The curing agents were found to effectively cure the resin, as indicated by the increasing ratio of N and S contents and decreasing the C content as the proportion of curing agents increased, as observed by scanning electron microscopy and energy dispersive X-ray spectroscopy data analyses. Moreover, thermogravimetric analyses revealed that the sample with 20% curing agent showed the highest thermal decomposition rate among the 2, 5, 10, and 20% curing agent dosages. These properties can be further improved by incorporating glass fibers. Overall, these results demonstrate the successful use of curing agents to create an efficient and functional polymer with superior thermal properties that are suitable for use in harsh environments. The findings of this study are a significant step forward in advancing the use of PN as a high-performance thermosetting polymer.","PeriodicalId":21480,"journal":{"name":"Science and Engineering of Composite Materials","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Engineering of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/secm-2022-0210","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Phthalonitrile (PN) is a highly promising material in the field of high-performance thermosetting polymers due to its ability to maintain its properties even at extremely high temperatures. The goal of this study was to investigate the effects of varying curing agents on the thermal properties of cured PN resin. The curing agents were found to effectively cure the resin, as indicated by the increasing ratio of N and S contents and decreasing the C content as the proportion of curing agents increased, as observed by scanning electron microscopy and energy dispersive X-ray spectroscopy data analyses. Moreover, thermogravimetric analyses revealed that the sample with 20% curing agent showed the highest thermal decomposition rate among the 2, 5, 10, and 20% curing agent dosages. These properties can be further improved by incorporating glass fibers. Overall, these results demonstrate the successful use of curing agents to create an efficient and functional polymer with superior thermal properties that are suitable for use in harsh environments. The findings of this study are a significant step forward in advancing the use of PN as a high-performance thermosetting polymer.
高性能热固性邻苯二甲腈基玻璃纤维固化剂配比的优化
摘要邻苯二甲腈(PN)在高性能热固性聚合物领域是一种非常有前途的材料,因为它即使在极高的温度下也能保持其性能。本研究的目的是研究不同固化剂对固化PN树脂热性能的影响。通过扫描电子显微镜和能量色散X射线光谱数据分析观察到,固化剂可以有效地固化树脂,表现为随着固化剂比例的增加,N和S含量的比例增加,C含量降低。此外,热重分析显示,在2、5、10和20%的固化剂剂量中,含有20%固化剂的样品显示出最高的热分解率。通过掺入玻璃纤维可以进一步改善这些性能。总的来说,这些结果证明了固化剂的成功使用,以创造出一种具有优异热性能的高效功能聚合物,适用于恶劣环境。这项研究的发现是在推进PN作为高性能热固性聚合物的使用方面迈出的重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science and Engineering of Composite Materials
Science and Engineering of Composite Materials 工程技术-材料科学:复合
CiteScore
3.10
自引率
5.30%
发文量
0
审稿时长
4 months
期刊介绍: Science and Engineering of Composite Materials is a quarterly publication which provides a forum for discussion of all aspects related to the structure and performance under simulated and actual service conditions of composites. The publication covers a variety of subjects, such as macro and micro and nano structure of materials, their mechanics and nanomechanics, the interphase, physical and chemical aging, fatigue, environmental interactions, and process modeling. The interdisciplinary character of the subject as well as the possible development and use of composites for novel and specific applications receives special attention.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信