On the irreducible representations of the Jordan triple system of $p \times q$ matrices

IF 0.5 Q3 MATHEMATICS
Hader A. Elgendy
{"title":"On the irreducible representations of the Jordan triple system of $p \\times q$ matrices","authors":"Hader A. Elgendy","doi":"10.24330/ieja.1226320","DOIUrl":null,"url":null,"abstract":"Let $\\mathcal{J}_{\\field}$ be the Jordan triple system of all $p \\times q$ ($p\\neq q$; $p,q >1)$ rectangular matrices over a field $\\field$ of characteristic 0 with the triple product $\\{x,y,z\\}= x y^t z+ z y^t x $, where $y^t$ is the transpose of $y$. We study the universal associative envelope $\\mathcal{U}(\\mathcal{J}_{\\field})$ of $\\mathcal{J}_{\\field}$ and show that $\\mathcal{U}(\\mathcal{J}_{\\field}) \\cong M_{p+q \\times p+q}(\\field)$, where $M_{p+q\\times p+q} (\\field)$ is the ordinary associative algebra of all $(p+q) \\times (p+q)$ matrices over $\\field$. It follows that there exists only one nontrivial irreducible representation of $\\mathcal{J}_{\\field}$. The center of $\\mathcal{U}(\\mathcal{J}_{\\field})$ is deduced.","PeriodicalId":43749,"journal":{"name":"International Electronic Journal of Algebra","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24330/ieja.1226320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let $\mathcal{J}_{\field}$ be the Jordan triple system of all $p \times q$ ($p\neq q$; $p,q >1)$ rectangular matrices over a field $\field$ of characteristic 0 with the triple product $\{x,y,z\}= x y^t z+ z y^t x $, where $y^t$ is the transpose of $y$. We study the universal associative envelope $\mathcal{U}(\mathcal{J}_{\field})$ of $\mathcal{J}_{\field}$ and show that $\mathcal{U}(\mathcal{J}_{\field}) \cong M_{p+q \times p+q}(\field)$, where $M_{p+q\times p+q} (\field)$ is the ordinary associative algebra of all $(p+q) \times (p+q)$ matrices over $\field$. It follows that there exists only one nontrivial irreducible representation of $\mathcal{J}_{\field}$. The center of $\mathcal{U}(\mathcal{J}_{\field})$ is deduced.
关于$p \乘以q$矩阵的Jordan三重系统的不可约表示
设$\mathcal{J}_{\field}$为所有的Jordan三重系统$p \times q$ ($p\neq q$;$p,q >1)$特征为0的域$\field$上的矩形矩阵与三重积$\{x,y,z\}= x y^t z+ z y^t x $,其中$y^t$是$y$的转置。我们研究了$\mathcal{J}_{\field}$的普遍关联包络$\mathcal{U}(\mathcal{J}_{\field})$,并证明了$\mathcal{U}(\mathcal{J}_{\field}) \cong M_{p+q \times p+q}(\field)$,其中$M_{p+q\times p+q} (\field)$是$\field$上所有$(p+q) \times (p+q)$矩阵的普通关联代数。由此可见,$\mathcal{J}_{\field}$只存在一个非平凡的不可约表示。推导出$\mathcal{U}(\mathcal{J}_{\field})$的中心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
16.70%
发文量
36
审稿时长
36 weeks
期刊介绍: The International Electronic Journal of Algebra is published twice a year. IEJA is reviewed by Mathematical Reviews, MathSciNet, Zentralblatt MATH, Current Mathematical Publications. IEJA seeks previously unpublished papers that contain: Module theory Ring theory Group theory Algebras Comodules Corings Coalgebras Representation theory Number theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信