Convergence of uniform triangulations under the Cardy embedding

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
N. Holden, Xin Sun
{"title":"Convergence of uniform triangulations under the Cardy embedding","authors":"N. Holden, Xin Sun","doi":"10.4310/acta.2023.v230.n1.a2","DOIUrl":null,"url":null,"abstract":"We consider an embedding of planar maps into an equilateral triangle $\\Delta$ which we call the Cardy embedding. The embedding is a discrete approximation of a conformal map based on percolation observables that are used in Smirnov's proof of Cardy's formula. Under the Cardy embedding, the planar map induces a metric and an area measure on $\\Delta$ and a boundary measure on $\\partial \\Delta$. We prove that for uniformly sampled triangulations, the metric and the measures converge jointly in the scaling limit to the Brownian disk conformally embedded into $\\Delta$ (i.e., to the $\\sqrt{8/3}$-Liouville quantum gravity disk). As part of our proof, we prove scaling limit results for critical site percolation on the uniform triangulations, in a quenched sense. In particular, we establish the scaling limit of the percolation crossing probability for a uniformly sampled triangulation with four boundary marked points.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2019-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/acta.2023.v230.n1.a2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 40

Abstract

We consider an embedding of planar maps into an equilateral triangle $\Delta$ which we call the Cardy embedding. The embedding is a discrete approximation of a conformal map based on percolation observables that are used in Smirnov's proof of Cardy's formula. Under the Cardy embedding, the planar map induces a metric and an area measure on $\Delta$ and a boundary measure on $\partial \Delta$. We prove that for uniformly sampled triangulations, the metric and the measures converge jointly in the scaling limit to the Brownian disk conformally embedded into $\Delta$ (i.e., to the $\sqrt{8/3}$-Liouville quantum gravity disk). As part of our proof, we prove scaling limit results for critical site percolation on the uniform triangulations, in a quenched sense. In particular, we establish the scaling limit of the percolation crossing probability for a uniformly sampled triangulation with four boundary marked points.
Cardy嵌入下一致三角剖分的收敛性
我们考虑将平面映射嵌入到等边三角形$\Delta$中,我们称之为Cardy嵌入。嵌入是基于Smirnov对Cardy公式的证明中使用的渗流可观察性的共形映射的离散近似。在Cardy嵌入下,平面图在$\Delta$上导出度量和面积测度,在$\partial\Delta$上导出边界测度。我们证明了对于均匀采样三角剖分,度量和测度在标度极限上共同收敛于保形嵌入$\Delta$的布朗圆盘(即,收敛于$\sqrt{8/3}$-Liouville量子引力圆盘)。作为证明的一部分,我们证明了均匀三角形上临界点渗流的标度极限结果,在淬火意义上。特别地,我们建立了具有四个边界标记点的均匀采样三角测量的渗流穿越概率的比例极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信