Zhenyu Zhao;Fei Fan;Quqin Sun;Huamin Jie;Zhou Shu;Wensong Wang;Kye Yak See
{"title":"Physics Informed Neural Network-based High-frequency Modeling of Induction Motors","authors":"Zhenyu Zhao;Fei Fan;Quqin Sun;Huamin Jie;Zhou Shu;Wensong Wang;Kye Yak See","doi":"10.23919/CJEE.2022.000036","DOIUrl":null,"url":null,"abstract":"The high-frequency (HF) modeling of induction motors plays a key role in predicting the motor terminal overvoltage and conducted emissions in a motor drive system. In this study, a physics informed neural network-based HF modeling method, which has the merits of high accuracy, good versatility, and simple parameterization, is proposed. The proposed model of the induction motor consists of a three-phase equivalent circuit with eighteen circuit elements per phase to ensure model accuracy. The per phase circuit structure is symmetric concerning its phase-start and phase-end points. This symmetry enables the proposed model to be applicable for both star- and delta-connected induction motors without having to recalculate the circuit element values when changing the motor connection from star to delta and vice versa. Motor physics knowledge, namely per-phase impedances, are used in the artificial neural network to obtain the values of the circuit elements. The parameterization can be easily implemented within a few minutes using a common personal computer (PC). Case studies verify the effectiveness of the proposed HF modeling method.","PeriodicalId":36428,"journal":{"name":"Chinese Journal of Electrical Engineering","volume":"8 4","pages":"30-38"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/7873788/10018147/10018160.pdf","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Electrical Engineering","FirstCategoryId":"1087","ListUrlMain":"https://ieeexplore.ieee.org/document/10018160/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 4
Abstract
The high-frequency (HF) modeling of induction motors plays a key role in predicting the motor terminal overvoltage and conducted emissions in a motor drive system. In this study, a physics informed neural network-based HF modeling method, which has the merits of high accuracy, good versatility, and simple parameterization, is proposed. The proposed model of the induction motor consists of a three-phase equivalent circuit with eighteen circuit elements per phase to ensure model accuracy. The per phase circuit structure is symmetric concerning its phase-start and phase-end points. This symmetry enables the proposed model to be applicable for both star- and delta-connected induction motors without having to recalculate the circuit element values when changing the motor connection from star to delta and vice versa. Motor physics knowledge, namely per-phase impedances, are used in the artificial neural network to obtain the values of the circuit elements. The parameterization can be easily implemented within a few minutes using a common personal computer (PC). Case studies verify the effectiveness of the proposed HF modeling method.