{"title":"Failure Analysis Methodology in Industrial Control Valves Using Quality Function","authors":"J. Cárdenas, Edwin Espinel, J. P. Rojas","doi":"10.15866/IREACO.V13I6.19331","DOIUrl":null,"url":null,"abstract":"Quality control methodologies and improvement methods have been applied to the process management in order to develop a set of fault diagnosis practices during the industrial operation of mechanical components in production lines. These practices are based on the reliability concept, which defines the failure probability due to the building or design processes and maintenance activities. In this sense, a quality methodology may be considered a powerful tool employed to determine the main causes of the recurring failure events associated with the downtime cost and the material losses during the industrial production. A quality function development may be conformed by four main phases: scheme design, components definition, engineering and quality control, and manufacturing work order. Taking into account the above, this paper proposes a quality function deployment method in order to define the appropriate control parameters, which define the needs of the specific production processes related to the functionality of the mechanical devices or the minimal requirements where inspection, test specifications, and failure diagnosis are developed. In this sense, this paper purposes a quality function development methodology in order to analyze the failure analysis of the pressure–control valve implemented in a hydraulic system to verify the possible causes of non-conformity and to define a set of alternatives that improve the production process. This decision-making problem has been based on two steps: strategic and operational terms, where each point has been resolved to define a successful development of this quality control methodology. The qualitative assessment of this particular study identifies a containment loss of the pressure-control valve used to maintain the reactor oil level in the hydraulic system.","PeriodicalId":38433,"journal":{"name":"International Review of Automatic Control","volume":"13 1","pages":"273"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Review of Automatic Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15866/IREACO.V13I6.19331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Quality control methodologies and improvement methods have been applied to the process management in order to develop a set of fault diagnosis practices during the industrial operation of mechanical components in production lines. These practices are based on the reliability concept, which defines the failure probability due to the building or design processes and maintenance activities. In this sense, a quality methodology may be considered a powerful tool employed to determine the main causes of the recurring failure events associated with the downtime cost and the material losses during the industrial production. A quality function development may be conformed by four main phases: scheme design, components definition, engineering and quality control, and manufacturing work order. Taking into account the above, this paper proposes a quality function deployment method in order to define the appropriate control parameters, which define the needs of the specific production processes related to the functionality of the mechanical devices or the minimal requirements where inspection, test specifications, and failure diagnosis are developed. In this sense, this paper purposes a quality function development methodology in order to analyze the failure analysis of the pressure–control valve implemented in a hydraulic system to verify the possible causes of non-conformity and to define a set of alternatives that improve the production process. This decision-making problem has been based on two steps: strategic and operational terms, where each point has been resolved to define a successful development of this quality control methodology. The qualitative assessment of this particular study identifies a containment loss of the pressure-control valve used to maintain the reactor oil level in the hydraulic system.