Conformal transformation of Douglas space of second kind with special (α, β)-metric

Q2 Mathematics
Rishab Ranjan, P. N. Pandey, Ajit Paul
{"title":"Conformal transformation of Douglas space of second kind with special (α, β)-metric","authors":"Rishab Ranjan, P. N. Pandey, Ajit Paul","doi":"10.1108/ajms-08-2021-0189","DOIUrl":null,"url":null,"abstract":"PurposeIn this paper, the authors prove that the Douglas space of second kind with a generalised form of special (α, β)-metric F, is conformally invariant.Design/methodology/approachFor, the authors have used the notion of conformal transformation and Douglas space.FindingsThe authors found some results to show that the Douglas space of second kind with certain (α, β)-metrics such as Randers metric, first approximate Matsumoto metric along with some special (α, β)-metrics, is invariant under a conformal change.Originality/valueThe authors introduced Douglas space of second kind and established conditions under which it can be transformed to a Douglas space of second kind.","PeriodicalId":36840,"journal":{"name":"Arab Journal of Mathematical Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arab Journal of Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ajms-08-2021-0189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

PurposeIn this paper, the authors prove that the Douglas space of second kind with a generalised form of special (α, β)-metric F, is conformally invariant.Design/methodology/approachFor, the authors have used the notion of conformal transformation and Douglas space.FindingsThe authors found some results to show that the Douglas space of second kind with certain (α, β)-metrics such as Randers metric, first approximate Matsumoto metric along with some special (α, β)-metrics, is invariant under a conformal change.Originality/valueThe authors introduced Douglas space of second kind and established conditions under which it can be transformed to a Douglas space of second kind.
具有特殊(α,β)-度量的第二类Douglas空间的保形变换
目的本文证明了具有特殊(α,β)-度量F的广义形式的第二类Douglas空间是保形不变的。设计/方法论/方法对于,作者使用了保角变换和道格拉斯空间的概念。结果表明,具有某些(α,β)-度量的第二类Douglas空间,如Randers度量、第一近似Matsumoto度量以及一些特殊的(α,α)-度量,在保角变化下是不变的。独创性/价值作者介绍了第二类道格拉斯空间,并建立了将其转化为第二类Douglas空间的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Arab Journal of Mathematical Sciences
Arab Journal of Mathematical Sciences Mathematics-Mathematics (all)
CiteScore
1.20
自引率
0.00%
发文量
17
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信