{"title":"Modelling of acetaldehyde and acetic acid combustion","authors":"Fekadu Mosisa Wako, G. Pio, E. Salzano","doi":"10.1080/13647830.2023.2178973","DOIUrl":null,"url":null,"abstract":"Despite the beneficial impact of biofuels on most regulated pollutants and carbon dioxide emissions, their combustion results in the generation of undesired pollutants, such as acetaldehyde and acetic acid. To better understand the chemistry of these species, detailed chemical kinetic models deriving from two alternative strategies for mechanism generation were developed and validated against available data. The first model represents a semi-lumped mechanism comprising 89 species and 366 reactions, whereas the latter is automatically generated to aggregate elemental steps based on a rate-based algorithm, and it contains 541 species and 27,334 reactions. Under the studied conditions, the two kinetic models fairly predicted ignition delay times and laminar burning velocity data of acetic acid and acetaldehyde. Few discrepancies were observed for ignition delay time at temperatures lower than 1300 K. However, the overall agreement between experimental measurements and numerical estimations allowed for the use of the two kinetic models to unravel the chemistry of the investigated species. Highlights Identification of key primary reactions for acetic acid and acetaldehyde Integration of an existing kinetic mechanism with selected reactions Development of a detailed kinetic mechanism through an automated algorithm Comparison of experimental and numerical data for overall reactivity Analysis of the chemistry of acetic acid and acetaldehyde","PeriodicalId":50665,"journal":{"name":"Combustion Theory and Modelling","volume":"27 1","pages":"536 - 557"},"PeriodicalIF":1.9000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion Theory and Modelling","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/13647830.2023.2178973","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Despite the beneficial impact of biofuels on most regulated pollutants and carbon dioxide emissions, their combustion results in the generation of undesired pollutants, such as acetaldehyde and acetic acid. To better understand the chemistry of these species, detailed chemical kinetic models deriving from two alternative strategies for mechanism generation were developed and validated against available data. The first model represents a semi-lumped mechanism comprising 89 species and 366 reactions, whereas the latter is automatically generated to aggregate elemental steps based on a rate-based algorithm, and it contains 541 species and 27,334 reactions. Under the studied conditions, the two kinetic models fairly predicted ignition delay times and laminar burning velocity data of acetic acid and acetaldehyde. Few discrepancies were observed for ignition delay time at temperatures lower than 1300 K. However, the overall agreement between experimental measurements and numerical estimations allowed for the use of the two kinetic models to unravel the chemistry of the investigated species. Highlights Identification of key primary reactions for acetic acid and acetaldehyde Integration of an existing kinetic mechanism with selected reactions Development of a detailed kinetic mechanism through an automated algorithm Comparison of experimental and numerical data for overall reactivity Analysis of the chemistry of acetic acid and acetaldehyde
期刊介绍:
Combustion Theory and Modelling is a leading international journal devoted to the application of mathematical modelling, numerical simulation and experimental techniques to the study of combustion. Articles can cover a wide range of topics, such as: premixed laminar flames, laminar diffusion flames, turbulent combustion, fires, chemical kinetics, pollutant formation, microgravity, materials synthesis, chemical vapour deposition, catalysis, droplet and spray combustion, detonation dynamics, thermal explosions, ignition, energetic materials and propellants, burners and engine combustion. A diverse spectrum of mathematical methods may also be used, including large scale numerical simulation, hybrid computational schemes, front tracking, adaptive mesh refinement, optimized parallel computation, asymptotic methods and singular perturbation techniques, bifurcation theory, optimization methods, dynamical systems theory, cellular automata and discrete methods and probabilistic and statistical methods. Experimental studies that employ intrusive or nonintrusive diagnostics and are published in the Journal should be closely related to theoretical issues, by highlighting fundamental theoretical questions or by providing a sound basis for comparison with theory.