Uniform distribution of sequences and its interplay with functional analysis

Pub Date : 2023-03-31 DOI:10.1007/s10476-023-0193-7
S. K. Mercourakis, G. Vassiliadis
{"title":"Uniform distribution of sequences and its interplay with functional analysis","authors":"S. K. Mercourakis,&nbsp;G. Vassiliadis","doi":"10.1007/s10476-023-0193-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we apply ideas from the theory of Uniform Distribution of sequences to Functional Analysis and then drawing inspiration from the consequent results, we study concepts and results in Uniform Distribution itself. so let <i>E</i> be a Banach space. then we prove:\n</p><ol>\n <li>\n <span>(a)</span>\n \n <p>If <i>F</i> is a bounded subset of <i>E</i> and <span>\\(x \\in \\overline {{\\rm{co}}} (F)\\)</span> (= the closed convex hull of <i>F</i>), then there is a sequence (<i>x</i><sub><i>n</i></sub>) ⊆ <i>F</i> which is Cesàro summable to <i>x</i>.</p>\n \n </li>\n <li>\n <span>(b)</span>\n \n <p>If <i>E</i> is separable, <i>F</i> ⊆ <i>E</i>* bounded and <span>\\(f \\in {\\overline {{\\rm{co}}} ^{{w^ \\ast}}}\\,(F)\\)</span>, then there is a sequence (<i>f</i><sub><i>n</i></sub>) ⊆ <i>F</i> whose sequence of arithmetic means <span>\\({{{f_1} + \\cdots +{f_N}} \\over N}\\)</span>, <i>N</i> ≥ 1 weak*-converges to <i>f</i>.</p>\n \n </li>\n </ol><p>By the aid of the Krein-Milman theorem, both (a) and (b) have interesting implications for closed, convex and bounded subsets Ω of <i>E</i> such that <span>\\(\\Omega = \\overline {{\\rm{co}}} ({\\rm{ex}}\\,\\Omega)\\)</span> and for weak* compact and convex subsets of <i>E</i>*. Of particular interest is the case when Ω = <i>B</i><sub><i>C</i>(<i>K</i>)*</sub>, where <i>K</i> is a compact metric space.</p><p>By further expanding the previous ideas and results, we are able to generalize a classical theorem of Uniform Distribution which is valid for increasing functions φ: <i>I</i> =[0,1] → ℝ with φ(0) = 0 and φ(1) = 1, for functions φ of bounded variation on <i>I</i> with φ(0) = 0 and total variation <i>V</i><sub>0</sub><sup>1</sup>φ = 1.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10476-023-0193-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-023-0193-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we apply ideas from the theory of Uniform Distribution of sequences to Functional Analysis and then drawing inspiration from the consequent results, we study concepts and results in Uniform Distribution itself. so let E be a Banach space. then we prove:

  1. (a)

    If F is a bounded subset of E and \(x \in \overline {{\rm{co}}} (F)\) (= the closed convex hull of F), then there is a sequence (xn) ⊆ F which is Cesàro summable to x.

  2. (b)

    If E is separable, FE* bounded and \(f \in {\overline {{\rm{co}}} ^{{w^ \ast}}}\,(F)\), then there is a sequence (fn) ⊆ F whose sequence of arithmetic means \({{{f_1} + \cdots +{f_N}} \over N}\), N ≥ 1 weak*-converges to f.

By the aid of the Krein-Milman theorem, both (a) and (b) have interesting implications for closed, convex and bounded subsets Ω of E such that \(\Omega = \overline {{\rm{co}}} ({\rm{ex}}\,\Omega)\) and for weak* compact and convex subsets of E*. Of particular interest is the case when Ω = BC(K)*, where K is a compact metric space.

By further expanding the previous ideas and results, we are able to generalize a classical theorem of Uniform Distribution which is valid for increasing functions φ: I =[0,1] → ℝ with φ(0) = 0 and φ(1) = 1, for functions φ of bounded variation on I with φ(0) = 0 and total variation V01φ = 1.

分享
查看原文
序列的均匀分布及其与泛函分析的相互作用
本文将序列均匀分布理论的思想应用于泛函分析,并从结果中得到启示,研究了均匀分布本身的概念和结果。设E是Banach空间。则我们证明:(a)如果F是E的有界子集,并且\(x\in\overline{\rm{co}}}(F)\)(=F的闭凸包),则存在一个序列(xn)⊆F,它是Cesàro可和于x的。(b)如果E是可分离的,F⊆E*有界且\(F\在{\overline{\rm{co}}}}^{{w^\ast}};}\,(F)\),则存在一个序列(fn)𕥄F,其算术平均数序列\({\F_1}+\cdots+{F_N}}\在N}\上),N≥1弱*-收敛于F。借助于Krein-Milman定理,(a)和(b)都对闭,E的凸和有界子集Ω,使得\(\Omega=\overline{{\rm{co}}}({\rm{ex}}\,\Omega)\)和E*的弱*紧致和凸子集。特别令人感兴趣的是当Ω=BC(K)*时的情况,其中K是紧致度量空间。通过进一步扩展先前的思想和结果,我们能够推广一个经典的均匀分布定理,该定理对增函数φ有效:I=[0,1]→ ℝ 当φ(0)=0和φ(1)=1时,对于I上有界变差的函数φ,当φ(O)=0和总变差V01φ=1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信