{"title":"Elastic solutions based on the Mori-Tanaka scheme for pressurized functionally graded cylinder","authors":"M. Eker, D. Yarımpabuç, A. Yıldırım, K. Celebi","doi":"10.17512/jamcm.2020.4.05","DOIUrl":null,"url":null,"abstract":". In this paper, an elastic analysis of a thick-walled functionally graded cylinder subjected to internal pressure is examined. Material properties for the isotropic material are estimated to obey the Mori-Tanaka homogenization scheme through the thickness. The resulting two-point irregular boundary value problem is solved by the pseudospectral Chebyshev method that converts the boundary value problem to the system of equations, which can be solved by any appropriate decomposition method. Benchmark solutions are used to validate the method. The effect of the arbitrarily chosen volume fraction index is demonstrated for stress and displacement distributions. The effective stresses for different inner radius and volume fraction index are also discussed.","PeriodicalId":43867,"journal":{"name":"Journal of Applied Mathematics and Computational Mechanics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics and Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17512/jamcm.2020.4.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4
Abstract
. In this paper, an elastic analysis of a thick-walled functionally graded cylinder subjected to internal pressure is examined. Material properties for the isotropic material are estimated to obey the Mori-Tanaka homogenization scheme through the thickness. The resulting two-point irregular boundary value problem is solved by the pseudospectral Chebyshev method that converts the boundary value problem to the system of equations, which can be solved by any appropriate decomposition method. Benchmark solutions are used to validate the method. The effect of the arbitrarily chosen volume fraction index is demonstrated for stress and displacement distributions. The effective stresses for different inner radius and volume fraction index are also discussed.