Elastic solutions based on the Mori-Tanaka scheme for pressurized functionally graded cylinder

Pub Date : 2020-12-01 DOI:10.17512/jamcm.2020.4.05
M. Eker, D. Yarımpabuç, A. Yıldırım, K. Celebi
{"title":"Elastic solutions based on the Mori-Tanaka scheme for pressurized functionally graded cylinder","authors":"M. Eker, D. Yarımpabuç, A. Yıldırım, K. Celebi","doi":"10.17512/jamcm.2020.4.05","DOIUrl":null,"url":null,"abstract":". In this paper, an elastic analysis of a thick-walled functionally graded cylinder subjected to internal pressure is examined. Material properties for the isotropic material are estimated to obey the Mori-Tanaka homogenization scheme through the thickness. The resulting two-point irregular boundary value problem is solved by the pseudospectral Chebyshev method that converts the boundary value problem to the system of equations, which can be solved by any appropriate decomposition method. Benchmark solutions are used to validate the method. The effect of the arbitrarily chosen volume fraction index is demonstrated for stress and displacement distributions. The effective stresses for different inner radius and volume fraction index are also discussed.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17512/jamcm.2020.4.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

. In this paper, an elastic analysis of a thick-walled functionally graded cylinder subjected to internal pressure is examined. Material properties for the isotropic material are estimated to obey the Mori-Tanaka homogenization scheme through the thickness. The resulting two-point irregular boundary value problem is solved by the pseudospectral Chebyshev method that converts the boundary value problem to the system of equations, which can be solved by any appropriate decomposition method. Benchmark solutions are used to validate the method. The effect of the arbitrarily chosen volume fraction index is demonstrated for stress and displacement distributions. The effective stresses for different inner radius and volume fraction index are also discussed.
分享
查看原文
基于Mori-Tanaka格式的增压功能梯度圆柱体弹性解
本文研究了厚壁功能梯度圆柱在内压作用下的弹性分析。各向同性材料的材料特性估计为在整个厚度上符合Mori-Tanaka均匀化方案。由此产生的两点不规则边值问题通过伪谱切比雪夫方法求解,该方法将边值问题转换为方程组,该方程组可以通过任何适当的分解方法求解。基准解决方案用于验证该方法。证明了任意选择的体积分数指数对应力和位移分布的影响。讨论了不同内径和体积分数指数下的有效应力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信