Clinical advantages of using unflattened 6-MV and 10-MV photon beams generated by the medical accelerator Elekta Versa HD based on their dosimetric parameters in comparison to conventional beams
IF 0.7 4区 物理与天体物理Q4 CHEMISTRY, INORGANIC & NUCLEAR
{"title":"Clinical advantages of using unflattened 6-MV and 10-MV photon beams generated by the medical accelerator Elekta Versa HD based on their dosimetric parameters in comparison to conventional beams","authors":"B. Baic, B. Kozłowska, R. Kwiatkowski, M. Dybek","doi":"10.2478/nuka-2019-0010","DOIUrl":null,"url":null,"abstract":"Abstract Photon beams with wide energy ranges from 4 MV to 25 MV are commonly used in radiotherapy nowadays. In recent years, there has been a strong interest in a certain modification of a radiotherapeutic apparatus by the application of the so-called flattening filter-free (FFF) beam. Several advantages of FFF beams over standard flattening filter (FF) beams are noticed, and this technical solution has aroused great interest among radiotherapeutic facilities. The goal of the present study is to investigate the differences between the conventional FF and unflattened FFF 6-MV and 10-MV photon beams in some basic dosimetric parameters and their influence on the whole radiotherapeutic treatment. The data provided here include the detailed characteristics as follows: percent depth dose (PDD), beam profile, edge of a half-profile, total scatter correction factor (TSCF) and head scatter correction factor (HSCF) for FF and FFF 6-MV and 10-MV photon beams from the Elekta Versa HD accelerator in the Katowice Oncology Center in Poland.","PeriodicalId":19467,"journal":{"name":"Nukleonika","volume":"64 1","pages":"77 - 86"},"PeriodicalIF":0.7000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nukleonika","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.2478/nuka-2019-0010","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 8
Abstract
Abstract Photon beams with wide energy ranges from 4 MV to 25 MV are commonly used in radiotherapy nowadays. In recent years, there has been a strong interest in a certain modification of a radiotherapeutic apparatus by the application of the so-called flattening filter-free (FFF) beam. Several advantages of FFF beams over standard flattening filter (FF) beams are noticed, and this technical solution has aroused great interest among radiotherapeutic facilities. The goal of the present study is to investigate the differences between the conventional FF and unflattened FFF 6-MV and 10-MV photon beams in some basic dosimetric parameters and their influence on the whole radiotherapeutic treatment. The data provided here include the detailed characteristics as follows: percent depth dose (PDD), beam profile, edge of a half-profile, total scatter correction factor (TSCF) and head scatter correction factor (HSCF) for FF and FFF 6-MV and 10-MV photon beams from the Elekta Versa HD accelerator in the Katowice Oncology Center in Poland.
期刊介绍:
"Nukleonika" is an international peer-reviewed, scientific journal publishing original top quality papers on fundamental, experimental, applied and theoretical aspects of nuclear sciences.
The fields of research include:
radiochemistry, radiation measurements, application of radionuclides in various branches of science and technology, chemistry of f-block elements, radiation chemistry, radiation physics, activation analysis, nuclear medicine, radiobiology, radiation safety, nuclear industrial electronics, environmental protection, radioactive wastes, nuclear technologies in material and process engineering, radioisotope diagnostic methods of engineering objects, nuclear physics, nuclear reactors and nuclear power, reactor physics, nuclear safety, fuel cycle, reactor calculations, nuclear chemical engineering, nuclear fusion, plasma physics etc.