Gagan Nandha Kumar, Kostas Katsalis, Panagiotis Papadimitriou, Paul Pop, Georg Carle
{"title":"SRv6-based Time-Sensitive Networks (TSN) with low-overhead rerouting","authors":"Gagan Nandha Kumar, Kostas Katsalis, Panagiotis Papadimitriou, Paul Pop, Georg Carle","doi":"10.1002/nem.2215","DOIUrl":null,"url":null,"abstract":"<p>Time-Sensitive Networks (TSN) aims at providing a solid underpinning for the support of application connectivity demands across a wide spectrum of use cases and operational environments, such as industrial automation and automotive networks. However, handling network updates in TSN entails additional challenges, stemming from the need to perform both flow rerouting and TSN schedule reconfiguration. To address this issue, we propose a software-defined network (SDN)-based approach for low-overhead TSN network updates, exploiting segment routing over IPv6 (SRv6) for path control. To this end, we introduce the concept of TSN subgraphs in order to quickly reschedule the flows traversing the problematic area and propose a TSN-aware routing heuristic to minimize the convergence time. We further describe the control plane implementation and its integration into Mininet, which empowers us to conduct a wide range of performance tests. Our evaluation results indicate that our approach yields faster recovery and reduces significantly the number of required reconfigurations upon failures, at the expense of a small SRv6 encoding/decoding overhead.</p>","PeriodicalId":14154,"journal":{"name":"International Journal of Network Management","volume":"33 4","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/nem.2215","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Network Management","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nem.2215","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2
Abstract
Time-Sensitive Networks (TSN) aims at providing a solid underpinning for the support of application connectivity demands across a wide spectrum of use cases and operational environments, such as industrial automation and automotive networks. However, handling network updates in TSN entails additional challenges, stemming from the need to perform both flow rerouting and TSN schedule reconfiguration. To address this issue, we propose a software-defined network (SDN)-based approach for low-overhead TSN network updates, exploiting segment routing over IPv6 (SRv6) for path control. To this end, we introduce the concept of TSN subgraphs in order to quickly reschedule the flows traversing the problematic area and propose a TSN-aware routing heuristic to minimize the convergence time. We further describe the control plane implementation and its integration into Mininet, which empowers us to conduct a wide range of performance tests. Our evaluation results indicate that our approach yields faster recovery and reduces significantly the number of required reconfigurations upon failures, at the expense of a small SRv6 encoding/decoding overhead.
期刊介绍:
Modern computer networks and communication systems are increasing in size, scope, and heterogeneity. The promise of a single end-to-end technology has not been realized and likely never will occur. The decreasing cost of bandwidth is increasing the possible applications of computer networks and communication systems to entirely new domains. Problems in integrating heterogeneous wired and wireless technologies, ensuring security and quality of service, and reliably operating large-scale systems including the inclusion of cloud computing have all emerged as important topics. The one constant is the need for network management. Challenges in network management have never been greater than they are today. The International Journal of Network Management is the forum for researchers, developers, and practitioners in network management to present their work to an international audience. The journal is dedicated to the dissemination of information, which will enable improved management, operation, and maintenance of computer networks and communication systems. The journal is peer reviewed and publishes original papers (both theoretical and experimental) by leading researchers, practitioners, and consultants from universities, research laboratories, and companies around the world. Issues with thematic or guest-edited special topics typically occur several times per year. Topic areas for the journal are largely defined by the taxonomy for network and service management developed by IFIP WG6.6, together with IEEE-CNOM, the IRTF-NMRG and the Emanics Network of Excellence.