Stratification of Patients with Diabetes Using Continuous Glucose Monitoring Profiles and Machine Learning.

Health data science Pub Date : 2022-04-27 eCollection Date: 2022-01-01 DOI:10.34133/2022/9892340
Yinan Mao, Kyle Xin Quan Tan, Augustin Seng, Peter Wong, Sue-Anne Toh, Alex R Cook
{"title":"Stratification of Patients with Diabetes Using Continuous Glucose Monitoring Profiles and Machine Learning.","authors":"Yinan Mao, Kyle Xin Quan Tan, Augustin Seng, Peter Wong, Sue-Anne Toh, Alex R Cook","doi":"10.34133/2022/9892340","DOIUrl":null,"url":null,"abstract":"<p><p><i>Background.</i> Continuous glucose monitoring (CGM) offers an opportunity for patients with diabetes to modify their lifestyle to better manage their condition and for clinicians to provide personalized healthcare and lifestyle advice. However, analytic tools are needed to standardize and analyze the rich data that emerge from CGM devices. This would allow glucotypes of patients to be identified to aid clinical decision-making.<i>Methods.</i> In this paper, we develop an analysis pipeline for CGM data and apply it to 148 diabetic patients with a total of 8632 days of follow up. The pipeline projects CGM data to a lower-dimensional space of features representing centrality, spread, size, and duration of glycemic excursions and the circadian cycle. We then use principal components analysis and <math><mi>k</mi></math>-means to cluster patients' records into one of four glucotypes and analyze cluster membership using multinomial logistic regression.<i>Results.</i> Glucotypes differ in the degree of control, amount of time spent in range, and on the presence and timing of hyper- and hypoglycemia. Patients on the program had statistically significant improvements in their glucose levels.<i>Conclusions.</i> This pipeline provides a fast automatic function to label raw CGM data without manual input.</p>","PeriodicalId":73207,"journal":{"name":"Health data science","volume":" ","pages":"9892340"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10880155/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/2022/9892340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background. Continuous glucose monitoring (CGM) offers an opportunity for patients with diabetes to modify their lifestyle to better manage their condition and for clinicians to provide personalized healthcare and lifestyle advice. However, analytic tools are needed to standardize and analyze the rich data that emerge from CGM devices. This would allow glucotypes of patients to be identified to aid clinical decision-making.Methods. In this paper, we develop an analysis pipeline for CGM data and apply it to 148 diabetic patients with a total of 8632 days of follow up. The pipeline projects CGM data to a lower-dimensional space of features representing centrality, spread, size, and duration of glycemic excursions and the circadian cycle. We then use principal components analysis and k-means to cluster patients' records into one of four glucotypes and analyze cluster membership using multinomial logistic regression.Results. Glucotypes differ in the degree of control, amount of time spent in range, and on the presence and timing of hyper- and hypoglycemia. Patients on the program had statistically significant improvements in their glucose levels.Conclusions. This pipeline provides a fast automatic function to label raw CGM data without manual input.

使用连续血糖监测资料和机器学习对糖尿病患者进行分层
背景持续血糖监测(CGM)为糖尿病患者提供了一个机会,可以改变他们的生活方式,更好地管理他们的病情,并为临床医生提供个性化的医疗保健和生活方式建议。然而,需要分析工具来标准化和分析CGM设备产生的丰富数据。这将允许识别患者的血型,以帮助临床决策。方法。在本文中,我们开发了CGM数据的分析管道,并将其应用于148名糖尿病患者,共随访8632天。该管道将CGM数据投影到代表血糖偏移和昼夜节律的中心性、分布、大小和持续时间的特征的低维空间。然后,我们使用主成分分析和k-means将患者的记录聚类为四种糖型中的一种,并使用多项式逻辑回归分析聚类成员关系。后果糖型在控制程度、在范围内花费的时间以及高血糖和低血糖的存在和时间上各不相同。参加该项目的患者血糖水平有统计学意义的改善。结论。该管道提供了一个快速的自动功能,无需手动输入即可标记原始CGM数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信