SofitMix: A Secure Offchain-Supported Bitcoin-Compatible Mixing Protocol

IF 7 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Haomeng Xie, Shufan Fei, Zheng Yan, Yang Xiao
{"title":"SofitMix: A Secure Offchain-Supported Bitcoin-Compatible Mixing Protocol","authors":"Haomeng Xie, Shufan Fei, Zheng Yan, Yang Xiao","doi":"10.1109/TDSC.2022.3213824","DOIUrl":null,"url":null,"abstract":"Privacy preservation is highly expected in the Bitcoin Network. However, only applying pseudonyms cannot completely ensure anonymity/unlinkability between payers and payees. Current approaches mainly depend on a mixer service, which obfuscates payer-payee relationships of transactions. While the mixer service improves transaction privacy, it still suffers from some severe security threats (e.g., DoS attack and collusion attack), and does not support effective and reliable off-chain payment in a parallel mode. In this article, we propose a mixing protocol for the Bitcoin Network based on zero-knowledge proof, called SofitMix. It is the first mixing protocol that can effectively resist both the DoS attack and the collusion attack. It can also support a set of parallel off-chain payments in a reliable way no matter whether some payers abort a transaction. We analyze and prove SofitMix security following the Universal Composability model with regard to fair exchange, unlinkability, collusion-resistance, DoS-resistance and Sybil-resistance. Through a proof-of-concept implementation, we demonstrate its validity and fairness. We also show its advance on off-chain payment reliability and DoS attack resistance, compared to TumbleBit.","PeriodicalId":13047,"journal":{"name":"IEEE Transactions on Dependable and Secure Computing","volume":"20 1","pages":"4311-4324"},"PeriodicalIF":7.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Dependable and Secure Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TDSC.2022.3213824","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 5

Abstract

Privacy preservation is highly expected in the Bitcoin Network. However, only applying pseudonyms cannot completely ensure anonymity/unlinkability between payers and payees. Current approaches mainly depend on a mixer service, which obfuscates payer-payee relationships of transactions. While the mixer service improves transaction privacy, it still suffers from some severe security threats (e.g., DoS attack and collusion attack), and does not support effective and reliable off-chain payment in a parallel mode. In this article, we propose a mixing protocol for the Bitcoin Network based on zero-knowledge proof, called SofitMix. It is the first mixing protocol that can effectively resist both the DoS attack and the collusion attack. It can also support a set of parallel off-chain payments in a reliable way no matter whether some payers abort a transaction. We analyze and prove SofitMix security following the Universal Composability model with regard to fair exchange, unlinkability, collusion-resistance, DoS-resistance and Sybil-resistance. Through a proof-of-concept implementation, we demonstrate its validity and fairness. We also show its advance on off-chain payment reliability and DoS attack resistance, compared to TumbleBit.
SofitMix:一个安全的离线支持的比特币兼容混合协议
比特币网络对隐私保护寄予厚望。然而,仅使用假名并不能完全确保付款人和收款人之间的匿名性/不可链接性。当前的方法主要依赖于混合器服务,它混淆了事务的付款人-收款人关系。虽然混合器服务提高了交易的隐私性,但它仍然受到一些严重的安全威胁(例如DoS攻击和共谋攻击),并且不支持并行模式下有效可靠的链下支付。在本文中,我们提出了一种基于零知识证明的比特币网络混合协议,称为SofitMix。它是第一个既能有效抵御DoS攻击又能有效抵御合谋攻击的混合协议。它还可以以可靠的方式支持一组并行的链下支付,无论一些支付方是否终止交易。从公平交换、不可链接性、抗共谋性、抗dos性和抗sybil性等方面分析并证明了SofitMix的安全性。通过概念验证实现,我们证明了其有效性和公平性。与TumbleBit相比,我们还展示了它在链下支付可靠性和抗DoS攻击方面的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Dependable and Secure Computing
IEEE Transactions on Dependable and Secure Computing 工程技术-计算机:软件工程
CiteScore
11.20
自引率
5.50%
发文量
354
审稿时长
9 months
期刊介绍: The "IEEE Transactions on Dependable and Secure Computing (TDSC)" is a prestigious journal that publishes high-quality, peer-reviewed research in the field of computer science, specifically targeting the development of dependable and secure computing systems and networks. This journal is dedicated to exploring the fundamental principles, methodologies, and mechanisms that enable the design, modeling, and evaluation of systems that meet the required levels of reliability, security, and performance. The scope of TDSC includes research on measurement, modeling, and simulation techniques that contribute to the understanding and improvement of system performance under various constraints. It also covers the foundations necessary for the joint evaluation, verification, and design of systems that balance performance, security, and dependability. By publishing archival research results, TDSC aims to provide a valuable resource for researchers, engineers, and practitioners working in the areas of cybersecurity, fault tolerance, and system reliability. The journal's focus on cutting-edge research ensures that it remains at the forefront of advancements in the field, promoting the development of technologies that are critical for the functioning of modern, complex systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信