{"title":"Microtiming and Mental Effort","authors":"Jo Fougner Skaansar, B. Laeng, A. Danielsen","doi":"10.1525/mp.2019.37.2.111","DOIUrl":null,"url":null,"abstract":"The present study tested two assumptions concerning the auditory processing of microtiming in musical grooves (i.e., repeating, movement-inducing rhythmic patterns): 1) Microtiming challenges the listener's internal framework of timing regularities, or meter, and demands cognitive effort. 2) Microtiming promotes a “groove” experience—a pleasant sense of wanting to move along with the music. Using professional jazz musicians and nonmusicians as participants, we hypothesized that microtiming asynchronies between bass and drums (varying from −80 to 80 ms) were related to a) an increase in “mental effort” (as indexed by pupillometry), and b) a decrease in the quality of sensorimotor synchronization (as indexed by reduced finger tapping stability). We found bass/drums-microtiming asynchronies to be positively related to pupil dilation and negatively related to tapping stability. In contrast, we found that steady timekeeping (presence of eighth note hi-hat in the grooves) decreased pupil size and increased tapping performance, though there were no conclusive differences in pupil response between musicians and nonmusicians. However, jazz musicians consistently tapped with higher stability than nonmusicians, reflecting an effect of rhythmic expertise. Except for the condition most closely resembling real music, participants preferred the on-the-grid grooves to displacements in microtiming and bass-succeeding-drums-conditions were preferred over the reverse.","PeriodicalId":47786,"journal":{"name":"Music Perception","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1525/mp.2019.37.2.111","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Music Perception","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1525/mp.2019.37.2.111","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"MUSIC","Score":null,"Total":0}
引用次数: 10
Abstract
The present study tested two assumptions concerning the auditory processing of microtiming in musical grooves (i.e., repeating, movement-inducing rhythmic patterns): 1) Microtiming challenges the listener's internal framework of timing regularities, or meter, and demands cognitive effort. 2) Microtiming promotes a “groove” experience—a pleasant sense of wanting to move along with the music. Using professional jazz musicians and nonmusicians as participants, we hypothesized that microtiming asynchronies between bass and drums (varying from −80 to 80 ms) were related to a) an increase in “mental effort” (as indexed by pupillometry), and b) a decrease in the quality of sensorimotor synchronization (as indexed by reduced finger tapping stability). We found bass/drums-microtiming asynchronies to be positively related to pupil dilation and negatively related to tapping stability. In contrast, we found that steady timekeeping (presence of eighth note hi-hat in the grooves) decreased pupil size and increased tapping performance, though there were no conclusive differences in pupil response between musicians and nonmusicians. However, jazz musicians consistently tapped with higher stability than nonmusicians, reflecting an effect of rhythmic expertise. Except for the condition most closely resembling real music, participants preferred the on-the-grid grooves to displacements in microtiming and bass-succeeding-drums-conditions were preferred over the reverse.
期刊介绍:
Music Perception charts the ongoing scholarly discussion and study of musical phenomena. Publishing original empirical and theoretical papers, methodological articles and critical reviews from renowned scientists and musicians, Music Perception is a repository of insightful research. The broad range of disciplines covered in the journal includes: •Psychology •Psychophysics •Linguistics •Neurology •Neurophysiology •Artificial intelligence •Computer technology •Physical and architectural acoustics •Music theory