{"title":"Longitudinal-torsional complex-mode ultrasonic actuator for vibration-assisted drilling of CFRP","authors":"Chen Zhang, Xiaoxue Wang, V. Silberschmidt","doi":"10.1080/10910344.2023.2181089","DOIUrl":null,"url":null,"abstract":"Abstract Carbon-fiber-reinforced plastic (CFRP) composites are intensively used in aircraft and aerospace industry thanks to their superior properties. Comparing to the conventional drilling (CD), vibration-assisted drilling (VAD) is a novel machining technique suitable for drilling CFRP. Still, multi-mode excitations with elliptical locus and low vibration performance limit the applications of current VAD schemes for CFRP. To overcome these limitations and improve the overall performance, an innovative longitudinal-torsional complex-mode ultrasonic vibration-assisted actuator with single excitation and an elliptical locus is presented employing a piezoelectric transducer and a stepped horn with spiral grooves. The proposed actuator is specially designed to deliver elliptical vibration and assure high vibration performance of a tool tip. Analysis of the actuation mechanism for the longitudinal-torsional composite vibration mode is discussed, and its simplified model is developed. A detailed design process of this actuator is given. Its vibration characteristics are verified with both finite-element simulation and experimental modal analysis using a swept sine test. It is demonstrated the developed prototype achieved longitudinal-torsional elliptical vibration. To validate the machining performance of the actuator, two groups of drilling experiments were performed. These indicate that the proposed actuator is capable of drilling CFRP with improved machining performance.","PeriodicalId":51109,"journal":{"name":"Machining Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2022-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machining Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10910344.2023.2181089","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Carbon-fiber-reinforced plastic (CFRP) composites are intensively used in aircraft and aerospace industry thanks to their superior properties. Comparing to the conventional drilling (CD), vibration-assisted drilling (VAD) is a novel machining technique suitable for drilling CFRP. Still, multi-mode excitations with elliptical locus and low vibration performance limit the applications of current VAD schemes for CFRP. To overcome these limitations and improve the overall performance, an innovative longitudinal-torsional complex-mode ultrasonic vibration-assisted actuator with single excitation and an elliptical locus is presented employing a piezoelectric transducer and a stepped horn with spiral grooves. The proposed actuator is specially designed to deliver elliptical vibration and assure high vibration performance of a tool tip. Analysis of the actuation mechanism for the longitudinal-torsional composite vibration mode is discussed, and its simplified model is developed. A detailed design process of this actuator is given. Its vibration characteristics are verified with both finite-element simulation and experimental modal analysis using a swept sine test. It is demonstrated the developed prototype achieved longitudinal-torsional elliptical vibration. To validate the machining performance of the actuator, two groups of drilling experiments were performed. These indicate that the proposed actuator is capable of drilling CFRP with improved machining performance.
期刊介绍:
Machining Science and Technology publishes original scientific and technical papers and review articles on topics related to traditional and nontraditional machining processes performed on all materials—metals and advanced alloys, polymers, ceramics, composites, and biomaterials.
Topics covered include:
-machining performance of all materials, including lightweight materials-
coated and special cutting tools: design and machining performance evaluation-
predictive models for machining performance and optimization, including machining dynamics-
measurement and analysis of machined surfaces-
sustainable machining: dry, near-dry, or Minimum Quantity Lubrication (MQL) and cryogenic machining processes
precision and micro/nano machining-
design and implementation of in-process sensors for monitoring and control of machining performance-
surface integrity in machining processes, including detection and characterization of machining damage-
new and advanced abrasive machining processes: design and performance analysis-
cutting fluids and special coolants/lubricants-
nontraditional and hybrid machining processes, including EDM, ECM, laser and plasma-assisted machining, waterjet and abrasive waterjet machining