RISK MANAGEMENT OF HAZARDOUS SOLID WASTES BY HAZARDOUS PROPERTY INCLUDING MERCURY CONTAINING WASTES

IF 1.2 Q4 ENGINEERING, ENVIRONMENTAL
P. Hennebert
{"title":"RISK MANAGEMENT OF HAZARDOUS SOLID WASTES BY HAZARDOUS PROPERTY INCLUDING MERCURY CONTAINING WASTES","authors":"P. Hennebert","doi":"10.31025/2611-4135/2022.15212","DOIUrl":null,"url":null,"abstract":"The classification of waste is complex. Once detailed chemical composition, and in some cases speciation testing has been completed, the chemicals present are checked either as hazardous chemicals or persistent organic pollutants (POPs). However, detailed waste characterisation data can be used to support onward management of wastes, including hazardous wastes. A process management flowchart has been compiled using data from twelve waste streams. Specifically, for hazardous waste, the proposed approach can be used to firstly identify how a potential hazard may be eliminated using specific treatment scenarios. Secondly risk mitigation strategies are provided to reduce risks during short-term management of transportation, preparation and processing of wastes. Finally, the approach highlights how waste characterisation data can be used to guide the long-term management of hazardous waste. For non-hazardous waste a risk approach generates case specific permissible concentration limits. Hazardous waste management by risk is proposed, either for short-term operations, or during the recycling loops. The wastes containing “legacy” banned substances must be phased out. But the wastes with hazardous compounds at hazardous concentration should be recycled in controlled recycling loop. They should be managed during the loop by a risk approach, like the products they were and the products that they will become, per risk according to REACH. A worked example of this approach to mercury containing waste by hazard and by risk is presented, using leaching data (risk) to prevent groundwater contamination by mine tailings using reverse modelling, proposed to the conference of the UN Minamata Convention.","PeriodicalId":44191,"journal":{"name":"Detritus","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Detritus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31025/2611-4135/2022.15212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 1

Abstract

The classification of waste is complex. Once detailed chemical composition, and in some cases speciation testing has been completed, the chemicals present are checked either as hazardous chemicals or persistent organic pollutants (POPs). However, detailed waste characterisation data can be used to support onward management of wastes, including hazardous wastes. A process management flowchart has been compiled using data from twelve waste streams. Specifically, for hazardous waste, the proposed approach can be used to firstly identify how a potential hazard may be eliminated using specific treatment scenarios. Secondly risk mitigation strategies are provided to reduce risks during short-term management of transportation, preparation and processing of wastes. Finally, the approach highlights how waste characterisation data can be used to guide the long-term management of hazardous waste. For non-hazardous waste a risk approach generates case specific permissible concentration limits. Hazardous waste management by risk is proposed, either for short-term operations, or during the recycling loops. The wastes containing “legacy” banned substances must be phased out. But the wastes with hazardous compounds at hazardous concentration should be recycled in controlled recycling loop. They should be managed during the loop by a risk approach, like the products they were and the products that they will become, per risk according to REACH. A worked example of this approach to mercury containing waste by hazard and by risk is presented, using leaching data (risk) to prevent groundwater contamination by mine tailings using reverse modelling, proposed to the conference of the UN Minamata Convention.
包括含汞废物在内的危险财产对危险固体废物的风险管理
废物的分类很复杂。一旦完成了详细的化学成分,在某些情况下完成了物种形成测试,就会将存在的化学品视为危险化学品或持久性有机污染物进行检查。然而,详细的废物特征数据可用于支持废物(包括危险废物)的进一步管理。利用12条废物流的数据编制了工艺管理流程图。具体而言,对于危险废物,所提出的方法可用于首先确定如何使用特定的处理方案消除潜在危害。其次,提供了风险缓解策略,以减少废物运输、制备和处理的短期管理过程中的风险。最后,该方法强调了如何使用废物特征数据来指导危险废物的长期管理。对于非危险废物,风险方法会产生特定情况的允许浓度限值。建议对短期运营或回收循环过程中的危险废物进行风险管理。必须逐步淘汰含有“遗留”违禁物质的废物。但含有危险浓度的有害化合物的废物应在受控回收循环中回收。在循环过程中,应根据REACH的每个风险,通过风险方法对它们进行管理,就像它们曾经的产品和将要成为的产品一样。向联合国《水俣公约》会议提出了一个按危害和风险处理含汞废物的方法的实例,利用浸出数据(风险),利用反向建模防止尾矿污染地下水。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Detritus
Detritus ENGINEERING, ENVIRONMENTAL-
CiteScore
3.30
自引率
23.50%
发文量
45
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信