Exact solutions for doubly curved laminated cross-ply and antisymmetric angle-ply shell substrate based bimorph piezoelectric energy harvesters

IF 2.7 3区 材料科学 Q2 ENGINEERING, MECHANICAL
B. K. Jha, M. C. Ray
{"title":"Exact solutions for doubly curved laminated cross-ply and antisymmetric angle-ply shell substrate based bimorph piezoelectric energy harvesters","authors":"B. K. Jha,&nbsp;M. C. Ray","doi":"10.1007/s10999-023-09639-8","DOIUrl":null,"url":null,"abstract":"<div><p>Exact solutions for the electro-elastic static response of simply supported doubly curved (DC) shell piezoelectric bimorph energy harvesters composed of laminated cross-ply or antisymmetric angle-ply composite substrate shell subjected to distributed mechanical loads have been derived. Both series and parallel connections of the piezoelectric layers of the bimorphs are considered for deriving the exact solutions. Derivation of such exact solutions is found to be possible when the piezoelectric layers are orthotropic and generally orthotropic. All linear theories of elasticity and piezoelectricity are used in orthogonal curvilinear coordinate system and a variational principle is employed to determine the boundary conditions associated with the governing equations. The electro-elastic governing equations are solved exactly to obtain the static responses of the harvesters for different shell configurations. The effects of curvature, stacking sequence of the substrate layers and connections of the piezoelectric layers on the harvesting capability of the laminated composite DC shell bimorph harvesters are investigated. It is explored from the exact solutions that the energy harvesting capability of hyperboloid DC Shell piezoelectric bimorph is maximum among the spherical, paraboloid and hyperboloid DC laminated piezoelectric shell harvesters. The expressions of the exact solutions for the DC laminated shell type piezoelectric energy harvesters derived in this paper may be treated as the benchmark solutions for verifying numerical and experimental results.</p></div>","PeriodicalId":593,"journal":{"name":"International Journal of Mechanics and Materials in Design","volume":"19 2","pages":"261 - 284"},"PeriodicalIF":2.7000,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanics and Materials in Design","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10999-023-09639-8","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Exact solutions for the electro-elastic static response of simply supported doubly curved (DC) shell piezoelectric bimorph energy harvesters composed of laminated cross-ply or antisymmetric angle-ply composite substrate shell subjected to distributed mechanical loads have been derived. Both series and parallel connections of the piezoelectric layers of the bimorphs are considered for deriving the exact solutions. Derivation of such exact solutions is found to be possible when the piezoelectric layers are orthotropic and generally orthotropic. All linear theories of elasticity and piezoelectricity are used in orthogonal curvilinear coordinate system and a variational principle is employed to determine the boundary conditions associated with the governing equations. The electro-elastic governing equations are solved exactly to obtain the static responses of the harvesters for different shell configurations. The effects of curvature, stacking sequence of the substrate layers and connections of the piezoelectric layers on the harvesting capability of the laminated composite DC shell bimorph harvesters are investigated. It is explored from the exact solutions that the energy harvesting capability of hyperboloid DC Shell piezoelectric bimorph is maximum among the spherical, paraboloid and hyperboloid DC laminated piezoelectric shell harvesters. The expressions of the exact solutions for the DC laminated shell type piezoelectric energy harvesters derived in this paper may be treated as the benchmark solutions for verifying numerical and experimental results.

Abstract Image

基于双弯曲层压交叉层和反对称角层壳衬底的双晶片压电能量收集器的精确解
本文推导了由层压交叉层或反对称角层复合基板壳构成的简支双弯曲壳压电双晶片能量采集器在分布式机械载荷作用下的电弹性静力响应的精确解。为了得到精确的解,我们考虑了双晶片压电层的串联和并联连接。当压电层是正交各向异性和一般是正交各向异性时,这种精确解的推导是可能的。所有的弹性和压电线性理论都在正交曲线坐标系中使用,并采用变分原理确定与控制方程相关的边界条件。精确求解了电弹性控制方程,得到了不同壳体结构下收割机的静态响应。研究了曲率、衬底层的堆叠顺序和压电层的连接方式对复合材料直流壳双晶片收获性能的影响。从精确解出发,探讨了双曲面直流壳压电双晶片的能量收集能力在球面、抛物面和双曲面直流层压壳集热器中是最大的。本文导出的直流层压壳型压电能量采集器精确解的表达式可作为验证数值和实验结果的基准解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Mechanics and Materials in Design
International Journal of Mechanics and Materials in Design ENGINEERING, MECHANICAL-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
6.00
自引率
5.40%
发文量
41
审稿时长
>12 weeks
期刊介绍: It is the objective of this journal to provide an effective medium for the dissemination of recent advances and original works in mechanics and materials'' engineering and their impact on the design process in an integrated, highly focused and coherent format. The goal is to enable mechanical, aeronautical, civil, automotive, biomedical, chemical and nuclear engineers, researchers and scientists to keep abreast of recent developments and exchange ideas on a number of topics relating to the use of mechanics and materials in design. Analytical synopsis of contents: The following non-exhaustive list is considered to be within the scope of the International Journal of Mechanics and Materials in Design: Intelligent Design: Nano-engineering and Nano-science in Design; Smart Materials and Adaptive Structures in Design; Mechanism(s) Design; Design against Failure; Design for Manufacturing; Design of Ultralight Structures; Design for a Clean Environment; Impact and Crashworthiness; Microelectronic Packaging Systems. Advanced Materials in Design: Newly Engineered Materials; Smart Materials and Adaptive Structures; Micromechanical Modelling of Composites; Damage Characterisation of Advanced/Traditional Materials; Alternative Use of Traditional Materials in Design; Functionally Graded Materials; Failure Analysis: Fatigue and Fracture; Multiscale Modelling Concepts and Methodology; Interfaces, interfacial properties and characterisation. Design Analysis and Optimisation: Shape and Topology Optimisation; Structural Optimisation; Optimisation Algorithms in Design; Nonlinear Mechanics in Design; Novel Numerical Tools in Design; Geometric Modelling and CAD Tools in Design; FEM, BEM and Hybrid Methods; Integrated Computer Aided Design; Computational Failure Analysis; Coupled Thermo-Electro-Mechanical Designs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信