Alexandrov-Fenchel inequalities for convex hypersurfaces with free boundary in a ball

IF 1.3 1区 数学 Q1 MATHEMATICS
Julian Scheuer, Guofang Wang, C. Xia
{"title":"Alexandrov-Fenchel inequalities for convex hypersurfaces with free boundary in a ball","authors":"Julian Scheuer, Guofang Wang, C. Xia","doi":"10.4310/jdg/1645207496","DOIUrl":null,"url":null,"abstract":"In this paper we first introduce quermassintegrals for free boundary hypersurfaces in the $(n+1)$-dimensional Euclidean unit ball. Then we solve some related isoperimetric type problems for convex free boundary hypersurfaces, which lead to new Alexandrov-Fenchel inequalities. In particular, for $n=2$ we obtain a Minkowski-type inequality and for $n=3$ we obtain an optimal Willmore-type inequality. To prove these estimates, we employ a specifically designed locally constrained inverse harmonic mean curvature flow with free boundary.","PeriodicalId":15642,"journal":{"name":"Journal of Differential Geometry","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2018-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jdg/1645207496","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 23

Abstract

In this paper we first introduce quermassintegrals for free boundary hypersurfaces in the $(n+1)$-dimensional Euclidean unit ball. Then we solve some related isoperimetric type problems for convex free boundary hypersurfaces, which lead to new Alexandrov-Fenchel inequalities. In particular, for $n=2$ we obtain a Minkowski-type inequality and for $n=3$ we obtain an optimal Willmore-type inequality. To prove these estimates, we employ a specifically designed locally constrained inverse harmonic mean curvature flow with free boundary.
球中具有自由边界的凸超曲面的Alexandrov-Fenchel不等式
本文首先引入了$(n+1)$维欧几里德单位球上的自由边界超曲面的quermass积分。在此基础上,我们解决了一些相关的凸自由边界超曲面等周型问题,得到了新的Alexandrov-Fenchel不等式。特别地,当n=2时,我们得到一个minkowski型不等式,当n=3时,我们得到一个最优willmore型不等式。为了证明这些估计,我们采用了一个特别设计的具有自由边界的局部约束逆调和平均曲率流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
24
审稿时长
>12 weeks
期刊介绍: Publishes the latest research in differential geometry and related areas of differential equations, mathematical physics, algebraic geometry, and geometric topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信