THE FORMATION OF HYDROGELS BASED ON CHITOSAN AND ITS WATER-SOLUBLE DERIVATIVES

IF 0.8 Q4 MATERIALS SCIENCE, BIOMATERIALS
A. Il’ina, B. Shagdarova, A. Lunkov, V. Varlamov
{"title":"THE FORMATION OF HYDROGELS BASED ON CHITOSAN AND ITS WATER-SOLUBLE\nDERIVATIVES","authors":"A. Il’ina, B. Shagdarova, A. Lunkov, V. Varlamov","doi":"10.15259/pcacd.25.001","DOIUrl":null,"url":null,"abstract":"This review considers articles on the formation of hydrogels based on chitosan as well as succinylated and quaternized chitosan derivatives. They are synthesized using low toxicity reagents, under ordinary conditions (low production costs). Chitosan derivatives are soluble in an extended range of pH values and characterized by mucoadhesiveness, bioavailability and biodegradability, which extends the potential of their medical applications. One of the most important properties of chitosan and its derivatives is the ability to form hydrogels. Depending on the nature of the bonds\nthat occur during formation, hydrogels are divided into chemically or physically crosslinked, or a mixture of the two. Chemically crosslinked gels have covalent bonds, while physically crosslinked gels are formed by noncovalent interactions, for example, ionic. Mixed hydrogels have both types of crosslinking.","PeriodicalId":44461,"journal":{"name":"Progress on Chemistry and Application of Chitin and its Derivatives","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress on Chemistry and Application of Chitin and its Derivatives","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15259/pcacd.25.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

This review considers articles on the formation of hydrogels based on chitosan as well as succinylated and quaternized chitosan derivatives. They are synthesized using low toxicity reagents, under ordinary conditions (low production costs). Chitosan derivatives are soluble in an extended range of pH values and characterized by mucoadhesiveness, bioavailability and biodegradability, which extends the potential of their medical applications. One of the most important properties of chitosan and its derivatives is the ability to form hydrogels. Depending on the nature of the bonds that occur during formation, hydrogels are divided into chemically or physically crosslinked, or a mixture of the two. Chemically crosslinked gels have covalent bonds, while physically crosslinked gels are formed by noncovalent interactions, for example, ionic. Mixed hydrogels have both types of crosslinking.
壳聚糖及其水溶性衍生物水凝胶的形成
本文综述了壳聚糖水凝胶的制备、琥珀酰化和季铵化壳聚糖衍生物的研究进展。它们是在普通条件下(低生产成本)使用低毒试剂合成的。壳聚糖衍生物具有广泛的pH可溶性、黏附性、生物利用度和生物降解性等特点,具有广阔的医学应用前景。壳聚糖及其衍生物最重要的特性之一是形成水凝胶的能力。根据形成过程中发生的键的性质,水凝胶分为化学或物理交联,或两者的混合物。化学交联凝胶具有共价键,而物理交联凝胶是由非共价相互作用形成的,例如离子。混合水凝胶具有两种类型的交联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
16.70%
发文量
19
期刊介绍: Progress in the Chemistry and Application of Chitin and its Derivatives is an annual journal focused on all aspects of production, modification, enzymology and application of chitin and its many derivatives, including chitosan. The journal publishes full-length papers as well as invited reviews. To be considered, papers must present original research that has not been published or accepted for publication elsewhere. The language of the journal will be English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信