Blow-up for compressible Euler system with space-dependent damping in 1-D

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Jinbo Geng, Ning-An Lai, Manwai Yuen, Jiang Zhou
{"title":"Blow-up for compressible Euler system with space-dependent damping in 1-D","authors":"Jinbo Geng, Ning-An Lai, Manwai Yuen, Jiang Zhou","doi":"10.1515/anona-2022-0304","DOIUrl":null,"url":null,"abstract":"Abstract This article considers the Cauchy problem for compressible Euler system in R {\\bf{R}} with damping, in which the coefficient depends on the space variable. Assuming the initial density has a small perturbation around a constant state and both the small perturbation and the small initial velocity field are compact supported, finite-time blow-up result will be established. This result reveals the fact that if the space-dependent damping coefficient decays fast enough in the far field (belongs to L 1 ( R ) {L}^{1}\\left({\\bf{R}}) ), then the damping is non-effective to the long-time behavior of the solution.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0304","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract This article considers the Cauchy problem for compressible Euler system in R {\bf{R}} with damping, in which the coefficient depends on the space variable. Assuming the initial density has a small perturbation around a constant state and both the small perturbation and the small initial velocity field are compact supported, finite-time blow-up result will be established. This result reveals the fact that if the space-dependent damping coefficient decays fast enough in the far field (belongs to L 1 ( R ) {L}^{1}\left({\bf{R}}) ), then the damping is non-effective to the long-time behavior of the solution.
一维具有空间相关阻尼的可压缩Euler系统的爆破
摘要本文研究了具有阻尼的R{\bf{R}中可压缩Euler系统的Cauchy问题,其中系数取决于空间变量。假设初始密度在常态附近有一个小扰动,并且小扰动和小初速度场都是紧支撑的,则将建立有限时间爆破结果。这一结果揭示了这样一个事实:如果空间相关阻尼系数在远场中衰减足够快(属于L1(R){L}^{1}\left({\bf{R}})),那么阻尼对解的长期行为是无效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信