Limit theory for U-statistics under geometric and topological constraints with rare events

IF 0.7 4区 数学 Q3 STATISTICS & PROBABILITY
Takashi Owada
{"title":"Limit theory for U-statistics under geometric and topological constraints with rare events","authors":"Takashi Owada","doi":"10.1017/jpr.2022.39","DOIUrl":null,"url":null,"abstract":"Abstract We study the geometric and topological features of U-statistics of order k when the k-tuples satisfying geometric and topological constraints do not occur frequently. Using appropriate scaling, we establish the convergence of U-statistics in vague topology, while the structure of a non-degenerate limit measure is also revealed. Our general result shows various limit theorems for geometric and topological statistics, including persistent Betti numbers of Čech complexes, the volume of simplices, a functional of the Morse critical points, and values of the min-type distance function. The required vague convergence can be obtained as a result of the limit theorem for point processes induced by U-statistics. The latter convergence particularly occurs in the \n$\\mathcal M_0$\n -topology.","PeriodicalId":50256,"journal":{"name":"Journal of Applied Probability","volume":"60 1","pages":"314 - 340"},"PeriodicalIF":0.7000,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/jpr.2022.39","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract We study the geometric and topological features of U-statistics of order k when the k-tuples satisfying geometric and topological constraints do not occur frequently. Using appropriate scaling, we establish the convergence of U-statistics in vague topology, while the structure of a non-degenerate limit measure is also revealed. Our general result shows various limit theorems for geometric and topological statistics, including persistent Betti numbers of Čech complexes, the volume of simplices, a functional of the Morse critical points, and values of the min-type distance function. The required vague convergence can be obtained as a result of the limit theorem for point processes induced by U-statistics. The latter convergence particularly occurs in the $\mathcal M_0$ -topology.
具有罕见事件的几何和拓扑约束下u统计量的极限理论
摘要研究k元组满足几何和拓扑约束不频繁出现时k阶u统计量的几何和拓扑特征。利用适当的尺度,我们建立了模糊拓扑中u统计量的收敛性,同时揭示了一个非退化极限测度的结构。我们的一般结果显示了几何和拓扑统计的各种极限定理,包括Čech复合体的持久Betti数、简单体的体积、莫尔斯临界点的泛函和最小型距离函数的值。利用u统计量诱导的点过程的极限定理,可以得到所需的模糊收敛性。后一种收敛性特别发生在数学M_0 -拓扑中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Probability
Journal of Applied Probability 数学-统计学与概率论
CiteScore
1.50
自引率
10.00%
发文量
92
审稿时长
6-12 weeks
期刊介绍: Journal of Applied Probability is the oldest journal devoted to the publication of research in the field of applied probability. It is an international journal published by the Applied Probability Trust, and it serves as a companion publication to the Advances in Applied Probability. Its wide audience includes leading researchers across the entire spectrum of applied probability, including biosciences applications, operations research, telecommunications, computer science, engineering, epidemiology, financial mathematics, the physical and social sciences, and any field where stochastic modeling is used. A submission to Applied Probability represents a submission that may, at the Editor-in-Chief’s discretion, appear in either the Journal of Applied Probability or the Advances in Applied Probability. Typically, shorter papers appear in the Journal, with longer contributions appearing in the Advances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信