{"title":"Limit theory for U-statistics under geometric and topological constraints with rare events","authors":"Takashi Owada","doi":"10.1017/jpr.2022.39","DOIUrl":null,"url":null,"abstract":"Abstract We study the geometric and topological features of U-statistics of order k when the k-tuples satisfying geometric and topological constraints do not occur frequently. Using appropriate scaling, we establish the convergence of U-statistics in vague topology, while the structure of a non-degenerate limit measure is also revealed. Our general result shows various limit theorems for geometric and topological statistics, including persistent Betti numbers of Čech complexes, the volume of simplices, a functional of the Morse critical points, and values of the min-type distance function. The required vague convergence can be obtained as a result of the limit theorem for point processes induced by U-statistics. The latter convergence particularly occurs in the \n$\\mathcal M_0$\n -topology.","PeriodicalId":50256,"journal":{"name":"Journal of Applied Probability","volume":"60 1","pages":"314 - 340"},"PeriodicalIF":0.7000,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/jpr.2022.39","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract We study the geometric and topological features of U-statistics of order k when the k-tuples satisfying geometric and topological constraints do not occur frequently. Using appropriate scaling, we establish the convergence of U-statistics in vague topology, while the structure of a non-degenerate limit measure is also revealed. Our general result shows various limit theorems for geometric and topological statistics, including persistent Betti numbers of Čech complexes, the volume of simplices, a functional of the Morse critical points, and values of the min-type distance function. The required vague convergence can be obtained as a result of the limit theorem for point processes induced by U-statistics. The latter convergence particularly occurs in the
$\mathcal M_0$
-topology.
期刊介绍:
Journal of Applied Probability is the oldest journal devoted to the publication of research in the field of applied probability. It is an international journal published by the Applied Probability Trust, and it serves as a companion publication to the Advances in Applied Probability. Its wide audience includes leading researchers across the entire spectrum of applied probability, including biosciences applications, operations research, telecommunications, computer science, engineering, epidemiology, financial mathematics, the physical and social sciences, and any field where stochastic modeling is used.
A submission to Applied Probability represents a submission that may, at the Editor-in-Chief’s discretion, appear in either the Journal of Applied Probability or the Advances in Applied Probability. Typically, shorter papers appear in the Journal, with longer contributions appearing in the Advances.