Duality of Moduli and Quasiconformal Mappings in Metric Spaces

IF 0.9 3区 数学 Q2 MATHEMATICS
Rebekah Jones, P. Lahti
{"title":"Duality of Moduli and Quasiconformal Mappings in Metric Spaces","authors":"Rebekah Jones, P. Lahti","doi":"10.1515/agms-2020-0112","DOIUrl":null,"url":null,"abstract":"Abstract We prove a duality relation for the moduli of the family of curves connecting two sets and the family of surfaces separating the sets, in the setting of a complete metric space equipped with a doubling measure and supporting a Poincaré inequality. Then we apply this to show that quasiconformal mappings can be characterized by the fact that they quasi-preserve the modulus of certain families of surfaces.","PeriodicalId":48637,"journal":{"name":"Analysis and Geometry in Metric Spaces","volume":"8 1","pages":"166 - 181"},"PeriodicalIF":0.9000,"publicationDate":"2019-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/agms-2020-0112","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Geometry in Metric Spaces","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2020-0112","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

Abstract

Abstract We prove a duality relation for the moduli of the family of curves connecting two sets and the family of surfaces separating the sets, in the setting of a complete metric space equipped with a doubling measure and supporting a Poincaré inequality. Then we apply this to show that quasiconformal mappings can be characterized by the fact that they quasi-preserve the modulus of certain families of surfaces.
度量空间中模与拟共形映射的对偶性
摘要在具有加倍测度的完备度量空间中,证明了连接两个集合的曲线族和分离两个集合的曲面族的模的对偶关系。然后我们应用这一点来证明拟共形映射可以用它们准保持某些曲面族的模量这一事实来表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis and Geometry in Metric Spaces
Analysis and Geometry in Metric Spaces Mathematics-Geometry and Topology
CiteScore
1.80
自引率
0.00%
发文量
8
审稿时长
16 weeks
期刊介绍: Analysis and Geometry in Metric Spaces is an open access electronic journal that publishes cutting-edge research on analytical and geometrical problems in metric spaces and applications. We strive to present a forum where all aspects of these problems can be discussed. AGMS is devoted to the publication of results on these and related topics: Geometric inequalities in metric spaces, Geometric measure theory and variational problems in metric spaces, Analytic and geometric problems in metric measure spaces, probability spaces, and manifolds with density, Analytic and geometric problems in sub-riemannian manifolds, Carnot groups, and pseudo-hermitian manifolds. Geometric control theory, Curvature in metric and length spaces, Geometric group theory, Harmonic Analysis. Potential theory, Mass transportation problems, Quasiconformal and quasiregular mappings. Quasiconformal geometry, PDEs associated to analytic and geometric problems in metric spaces.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信