An analytical solution for nonlinear vibration of floating plate on the fluid by modified multiple scales method

Q4 Chemical Engineering
F. Rabiee, A. Jafari
{"title":"An analytical solution for nonlinear vibration of floating plate on the fluid by modified multiple scales method","authors":"F. Rabiee, A. Jafari","doi":"10.22059/JCAMECH.2021.327315.639","DOIUrl":null,"url":null,"abstract":"The aim of the present paper is to analytically study the nonlinear forced vibration of a rectangular plate floating on the fluid by Modified Multiple Time Scales method for the first time. It is assumed that the fluid is stationary, incompressible, non-viscous, and non-rotational, and the plate is subjected to transversal excitation. The boundary condition is considered to be simply supported. Using von Karman nonlinear strain displacement relationships, the extended Hamilton principle, and FSTD plate theory, the partial differential equations of motion are derived. The fluid is mathematically modeled by Bernoulli equation and the velocity potential function. Galerkin method is then applied for converting the nonlinear partial differential equations into time-dependent nonlinear ordinary differential equations. The resulted equations are solved analytically by the Modified Multiple Scales Method, thereafter. Despite the large number of derivatives and calculations of the conventional multiple scale method, this approach is very simple and straightforward. The results reveal an excellent agreement with the traditional Multiple Scales method results and existing studies, and are more accurate than other available results. The effect of the presence of fluid near the plate on natural frequency and amplitude of vibration of plate are studied. The effects of some key parameters of the system are also examined.","PeriodicalId":37801,"journal":{"name":"Applied and Computational Mechanics","volume":"52 1","pages":"433-450"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22059/JCAMECH.2021.327315.639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

The aim of the present paper is to analytically study the nonlinear forced vibration of a rectangular plate floating on the fluid by Modified Multiple Time Scales method for the first time. It is assumed that the fluid is stationary, incompressible, non-viscous, and non-rotational, and the plate is subjected to transversal excitation. The boundary condition is considered to be simply supported. Using von Karman nonlinear strain displacement relationships, the extended Hamilton principle, and FSTD plate theory, the partial differential equations of motion are derived. The fluid is mathematically modeled by Bernoulli equation and the velocity potential function. Galerkin method is then applied for converting the nonlinear partial differential equations into time-dependent nonlinear ordinary differential equations. The resulted equations are solved analytically by the Modified Multiple Scales Method, thereafter. Despite the large number of derivatives and calculations of the conventional multiple scale method, this approach is very simple and straightforward. The results reveal an excellent agreement with the traditional Multiple Scales method results and existing studies, and are more accurate than other available results. The effect of the presence of fluid near the plate on natural frequency and amplitude of vibration of plate are studied. The effects of some key parameters of the system are also examined.
流体上浮板非线性振动的修正多尺度法解析解
本文首次采用修正的多时间尺度方法对浮在流体上的矩形板的非线性强迫振动进行了分析研究。假设流体是静止的、不可压缩的、非粘性的和非旋转的,并且板受到横向激励。边界条件被认为是简单支持的。利用von Karman非线性应变-位移关系、推广的Hamilton原理和FSTD板理论,导出了运动偏微分方程。流体通过伯努利方程和速度势函数进行数学建模。然后应用Galerkin方法将非线性偏微分方程转化为含时非线性常微分方程。然后用修正的多尺度方法对所得方程进行解析求解。尽管传统的多尺度方法有大量的导数和计算,但这种方法非常简单明了。结果与传统的多尺度方法和现有研究结果非常一致,并且比其他可用结果更准确。研究了板附近流体的存在对板固有频率和振幅的影响。文中还考察了系统中一些关键参数的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied and Computational Mechanics
Applied and Computational Mechanics Engineering-Computational Mechanics
CiteScore
0.80
自引率
0.00%
发文量
10
审稿时长
14 weeks
期刊介绍: The ACM journal covers a broad spectrum of topics in all fields of applied and computational mechanics with special emphasis on mathematical modelling and numerical simulations with experimental support, if relevant. Our audience is the international scientific community, academics as well as engineers interested in such disciplines. Original research papers falling into the following areas are considered for possible publication: solid mechanics, mechanics of materials, thermodynamics, biomechanics and mechanobiology, fluid-structure interaction, dynamics of multibody systems, mechatronics, vibrations and waves, reliability and durability of structures, structural damage and fracture mechanics, heterogenous media and multiscale problems, structural mechanics, experimental methods in mechanics. This list is neither exhaustive nor fixed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信