Furan-derived Schiff base covalent adaptable thermosets with recyclability and anti-flammability

IF 9.1 Q1 ENGINEERING, CHEMICAL
{"title":"Furan-derived Schiff base covalent adaptable thermosets with recyclability and anti-flammability","authors":"","doi":"10.1016/j.gce.2023.08.005","DOIUrl":null,"url":null,"abstract":"<div><p>Conventional thermosetting polymers, mostly derived from nonrenewable petroleum resources, are not reprocessable and recyclable due to their highly cross-linked three-dimensional networks and face the disadvantage of high flammability. To solve these issues, in this study, we synthesized a novel Schiff base covalent adaptable thermoset from a furan-derived tri-aldehyde monomer (TMFP) and a furan-derived di-amine monomer (DFDA). The as-prepared TMFP-DFDA-Vitrimer exhibited superior anti-flammability with a high limiting oxygen index (LOI) of 35.0% and a UL-94 V-0 rating, which was attributed to the excellent charring ability. Additionally, TMFP-DFDA-Vitrimer could also be conveniently recycled by chemical decomposition under a mixed hydrochloric acid/tetrahydrofuran (HCl/THF) solution. After recycling for 5 times, the thermal, mechanical, and flame retardant properties of the recycled TMFP-DFDA-Vitrimer retained almost unchanged compared to the original one. This work provides a prime instance to develop advanced thermosetting polymers from abundant furan-based compounds.</p></div>","PeriodicalId":66474,"journal":{"name":"Green Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":9.1000,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666952823000432/pdfft?md5=ab3c4a3763bbffce1248e8c143770398&pid=1-s2.0-S2666952823000432-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemical Engineering","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666952823000432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Conventional thermosetting polymers, mostly derived from nonrenewable petroleum resources, are not reprocessable and recyclable due to their highly cross-linked three-dimensional networks and face the disadvantage of high flammability. To solve these issues, in this study, we synthesized a novel Schiff base covalent adaptable thermoset from a furan-derived tri-aldehyde monomer (TMFP) and a furan-derived di-amine monomer (DFDA). The as-prepared TMFP-DFDA-Vitrimer exhibited superior anti-flammability with a high limiting oxygen index (LOI) of 35.0% and a UL-94 V-0 rating, which was attributed to the excellent charring ability. Additionally, TMFP-DFDA-Vitrimer could also be conveniently recycled by chemical decomposition under a mixed hydrochloric acid/tetrahydrofuran (HCl/THF) solution. After recycling for 5 times, the thermal, mechanical, and flame retardant properties of the recycled TMFP-DFDA-Vitrimer retained almost unchanged compared to the original one. This work provides a prime instance to develop advanced thermosetting polymers from abundant furan-based compounds.

Abstract Image

呋喃衍生的希夫碱共价适应性热固性材料,具有可回收性和抗燃性
传统的热固性聚合物大多来源于不可再生的石油资源,由于其高度交联的三维网络而无法进行再加工和回收利用,同时还面临着易燃性高的缺点。为了解决这些问题,在本研究中,我们用呋喃衍生的三醛单体(TMFP)和呋喃衍生的二胺单体(DFDA)合成了一种新型希夫碱共价适应性热固性塑料。制备的 TMFP-DFDA-Vitrimer 具有优异的抗燃性,极限氧指数(LOI)高达 35.0%,UL-94 V-0 级,这归功于其出色的炭化能力。此外,TMFP-DFDA-Vitrimer 还可以在盐酸/四氢呋喃(HCl/THF)混合溶液中通过化学分解进行回收,非常方便。经过 5 次回收后,回收的 TMFP-DFDA-Vitrimer 的热性能、机械性能和阻燃性能与原来的几乎没有变化。这项工作为利用丰富的呋喃基化合物开发先进的热固性聚合物提供了一个实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Green Chemical Engineering
Green Chemical Engineering Process Chemistry and Technology, Catalysis, Filtration and Separation
CiteScore
11.60
自引率
0.00%
发文量
58
审稿时长
51 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信