{"title":"Linear random walks on the torus","authors":"Weikun He, Nicolas de Saxc'e","doi":"10.1215/00127094-2021-0045","DOIUrl":null,"url":null,"abstract":"We prove a quantitative equidistribution result for linear random walks on the torus, similar to a theorem of Bourgain, Furman, Lindenstrauss and Mozes, but without any proximality assumption. An application is given to expansion in simple groups, modulo arbitrary integers.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2019-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2021-0045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 14
Abstract
We prove a quantitative equidistribution result for linear random walks on the torus, similar to a theorem of Bourgain, Furman, Lindenstrauss and Mozes, but without any proximality assumption. An application is given to expansion in simple groups, modulo arbitrary integers.