How many clusters exist? Answer via maximum clustering similarity implemented in R

Q3 Medicine
A. Albatineh, M. Wilcox, B. Zogheib, M. Niewiadomska-Bugaj
{"title":"How many clusters exist? Answer via maximum clustering similarity implemented in R","authors":"A. Albatineh, M. Wilcox, B. Zogheib, M. Niewiadomska-Bugaj","doi":"10.1080/24709360.2019.1615770","DOIUrl":null,"url":null,"abstract":"Finding the number of clusters in a data set is considered as one of the fundamental problems in cluster analysis. This paper integrates maximum clustering similarity (MCS), for finding the optimal number of clusters, into R statistical software through the package MCSim. The similarity between the two clustering methods is calculated at the same number of clusters, using Rand [Objective criteria for the evaluation of clustering methods. J Am Stat Assoc. 1971;66:846–850.] and Jaccard [The distribution of the flora of the alpine zone. New Phytologist. 1912;11:37–50.] indices, corrected for chance agreement. The number of clusters at which the index attains its maximum with most frequency is a candidate for the optimal number of clusters. Unlike other criteria, MCS can be used with circular data. Seven clustering algorithms, existing in R, are implemented in MCSim. A graph of the number of clusters vs. clusters similarity using corrected similarity indices is produced. Values of the similarity indices and a clustering tree (dendrogram) are produced. Several examples including simulated, real, and circular data sets are presented to show how MCSim successfully works in practice.","PeriodicalId":37240,"journal":{"name":"Biostatistics and Epidemiology","volume":"3 1","pages":"62 - 79"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24709360.2019.1615770","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics and Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24709360.2019.1615770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Finding the number of clusters in a data set is considered as one of the fundamental problems in cluster analysis. This paper integrates maximum clustering similarity (MCS), for finding the optimal number of clusters, into R statistical software through the package MCSim. The similarity between the two clustering methods is calculated at the same number of clusters, using Rand [Objective criteria for the evaluation of clustering methods. J Am Stat Assoc. 1971;66:846–850.] and Jaccard [The distribution of the flora of the alpine zone. New Phytologist. 1912;11:37–50.] indices, corrected for chance agreement. The number of clusters at which the index attains its maximum with most frequency is a candidate for the optimal number of clusters. Unlike other criteria, MCS can be used with circular data. Seven clustering algorithms, existing in R, are implemented in MCSim. A graph of the number of clusters vs. clusters similarity using corrected similarity indices is produced. Values of the similarity indices and a clustering tree (dendrogram) are produced. Several examples including simulated, real, and circular data sets are presented to show how MCSim successfully works in practice.
有多少集群存在?通过在R中实现的最大聚类相似性来回答
找出数据集中的聚类数量被认为是聚类分析的基本问题之一。本文通过MCSim软件包将最大聚类相似性(MCS)集成到R统计软件中,以寻找最优聚类数。两种聚类方法之间的相似性是在相同数量的聚类下计算的,使用Rand[聚类方法评估的客观标准。J Am Stat Assoc.1971;66:846–850.]和Jaccard[高山区植物群的分布。新植物学家。1912;11:37–50.]指数,对偶然一致性进行校正。指数以最高频率达到最大值的聚类数量是最优聚类数量的候选者。与其他标准不同,MCS可用于循环数据。在MCSim中实现了R中存在的七种聚类算法。使用校正的相似性指数生成聚类数量与聚类相似性的关系图。生成相似性指数的值和聚类树(树状图)。给出了几个例子,包括模拟、真实和循环数据集,以展示MCSim是如何在实践中成功工作的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biostatistics and Epidemiology
Biostatistics and Epidemiology Medicine-Health Informatics
CiteScore
1.80
自引率
0.00%
发文量
23
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信