{"title":"Hardy–Littlewood and Ulyanov inequalities","authors":"Yurii Kolomoitsev, S. Tikhonov","doi":"10.1090/memo/1325","DOIUrl":null,"url":null,"abstract":"<p>We give the full solution of the following problem: obtain sharp inequalities between the moduli of smoothness <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"omega Subscript alpha Baseline left-parenthesis f comma t right-parenthesis Subscript q\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>ω<!-- ω --></mml:mi>\n <mml:mi>α<!-- α --></mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>f</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>t</mml:mi>\n <mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mi>q</mml:mi>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\omega _\\alpha (f,t)_q</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"omega Subscript beta Baseline left-parenthesis f comma t right-parenthesis Subscript p\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>ω<!-- ω --></mml:mi>\n <mml:mi>β<!-- β --></mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>f</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>t</mml:mi>\n <mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mi>p</mml:mi>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\omega _\\beta (f,t)_p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0 greater-than p greater-than q less-than-or-equal-to normal infinity\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>0</mml:mn>\n <mml:mo>></mml:mo>\n <mml:mi>p</mml:mi>\n <mml:mo>></mml:mo>\n <mml:mi>q</mml:mi>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">0>p>q\\le \\infty</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. A similar problem for the generalized <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\">\n <mml:semantics>\n <mml:mi>K</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">K</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-functionals and their realizations between the couples <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper L Subscript p Baseline comma upper W Subscript p Superscript psi Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>L</mml:mi>\n <mml:mi>p</mml:mi>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:msubsup>\n <mml:mi>W</mml:mi>\n <mml:mi>p</mml:mi>\n <mml:mi>ψ<!-- ψ --></mml:mi>\n </mml:msubsup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(L_p, W_p^\\psi )</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper L Subscript q Baseline comma upper W Subscript q Superscript phi Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>L</mml:mi>\n <mml:mi>q</mml:mi>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:msubsup>\n <mml:mi>W</mml:mi>\n <mml:mi>q</mml:mi>\n <mml:mi>φ<!-- φ --></mml:mi>\n </mml:msubsup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(L_q, W_q^\\varphi )</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is also solved.</p>\n\n<p>The main tool is the new Hardy–Littlewood–Nikol’skii inequalities. More precisely, we obtained the asymptotic behavior of the quantity <disp-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sup Underscript upper T Subscript n Baseline Endscripts StartFraction double-vertical-bar script upper D left-parenthesis psi right-parenthesis left-parenthesis upper T Subscript n Baseline right-parenthesis double-vertical-bar Subscript q Baseline Over double-vertical-bar script upper D left-parenthesis phi right-parenthesis left-parenthesis upper T Subscript n Baseline right-parenthesis double-vertical-bar Subscript p Baseline EndFraction comma 0 greater-than p greater-than q less-than-or-equal-to normal infinity comma\">\n <mml:semantics>\n <mml:mrow>\n <mml:munder>\n <mml:mo movablelimits=\"true\" form=\"prefix\">sup</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:msub>\n <mml:mi>T</mml:mi>\n <mml:mi>n</mml:mi>\n </mml:msub>\n </mml:mrow>\n </mml:munder>\n <mml:mfrac>\n <mml:mrow>\n <mml:mo fence=\"false\" stretchy=\"false\">‖<!-- ‖ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">D</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>ψ<!-- ψ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>T</mml:mi>\n <mml:mi>n</mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:msub>\n <mml:mo fence=\"false\" stretchy=\"false\">‖<!-- ‖ --></mml:mo>\n <mml:mi>q</mml:mi>\n </mml:msub>\n </mml:mrow>\n <mml:mrow>\n <mml:mo fence=\"false\" stretchy=\"false\">‖<!-- ‖ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">D</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>φ<!-- φ --></mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>T</mml:mi>\n <mml:mi>n</mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:msub>\n <mml:mo fence=\"false\" stretchy=\"false\">‖<!-- ‖ --></mml:mo>\n <mml:mi>p</mml:mi>\n </mml:msub>\n </mml:mrow>\n </mml:mfrac>\n <mml:mo>,</mml:mo>\n <mml:mspace width=\"2em\" />\n <mml:mn>0</mml:mn>\n <mml:mo>></mml:mo>\n <mml:mi>p</mml:mi>\n <mml:mo>></mml:mo>\n <mml:mi>q</mml:mi>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n <mml:mo>,</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\begin{equation*} \\sup _{T_n} \\frac {\\Vert \\mathcal {D}(\\psi )(T_n)\\Vert _q}{\\Vert \\mathcal {D}({\\varphi })(T_n)\\Vert _p},\\qquad 0>p>q\\le \\infty , \\end{equation*}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</disp-formula>\n where the supremum is taken over all nontrivial trigonometric polynomials <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T Subscript n\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>T</mml:mi>\n <mml:mi>n</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">T_n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of degree at most <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\">\n <mml:semantics>\n <mml:mi>n</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper D left-parenthesis psi right-parenthesis comma script upper D left-parenthesis phi right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">D</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>ψ<!-- ψ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>,</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">D</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>φ<!-- φ --></mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {D}(\\psi ), \\mathcal {D}({\\varphi })</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> are the Weyl-type differentiation operators.</p>\n\n<p>We also prove the Ulyanov and Kolyada-type inequalities in the Hardy spaces. Finally, we apply the obtained estimates to derive new embedding theorems for the Lipschitz and Besov spaces.</p>","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2017-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memoirs of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1325","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 20
Abstract
We give the full solution of the following problem: obtain sharp inequalities between the moduli of smoothness ωα(f,t)q\omega _\alpha (f,t)_q and ωβ(f,t)p\omega _\beta (f,t)_p for 0>p>q≤∞0>p>q\le \infty. A similar problem for the generalized KK-functionals and their realizations between the couples (Lp,Wpψ)(L_p, W_p^\psi ) and (Lq,Wqφ)(L_q, W_q^\varphi ) is also solved.
The main tool is the new Hardy–Littlewood–Nikol’skii inequalities. More precisely, we obtained the asymptotic behavior of the quantity supTn‖D(ψ)(Tn)‖q‖D(φ)(Tn)‖p,0>p>q≤∞,\begin{equation*} \sup _{T_n} \frac {\Vert \mathcal {D}(\psi )(T_n)\Vert _q}{\Vert \mathcal {D}({\varphi })(T_n)\Vert _p},\qquad 0>p>q\le \infty , \end{equation*}
where the supremum is taken over all nontrivial trigonometric polynomials TnT_n of degree at most nn and D(ψ),D(φ)\mathcal {D}(\psi ), \mathcal {D}({\varphi }) are the Weyl-type differentiation operators.
We also prove the Ulyanov and Kolyada-type inequalities in the Hardy spaces. Finally, we apply the obtained estimates to derive new embedding theorems for the Lipschitz and Besov spaces.
期刊介绍:
Memoirs of the American Mathematical Society is devoted to the publication of research in all areas of pure and applied mathematics. The Memoirs is designed particularly to publish long papers or groups of cognate papers in book form, and is under the supervision of the Editorial Committee of the AMS journal Transactions of the AMS. To be accepted by the editorial board, manuscripts must be correct, new, and significant. Further, they must be well written and of interest to a substantial number of mathematicians.