Time Decay Estimate with Diffusion Wave Property and Smoothing Effect for Solutions to the Compressible Navier-Stokes-Korteweg System

Pub Date : 2019-05-31 DOI:10.1619/fesi.64.163
Takayuki Kobayashi, Kazuyuki Tsuda
{"title":"Time Decay Estimate with Diffusion Wave Property and Smoothing Effect for Solutions to the Compressible Navier-Stokes-Korteweg System","authors":"Takayuki Kobayashi, Kazuyuki Tsuda","doi":"10.1619/fesi.64.163","DOIUrl":null,"url":null,"abstract":"Time decay estimate of solutions to the compressible Navier-Stokes-Korteweg system is studied. Concerning the linearized problem, the decay estimate with diffusion wave property for an initial data is derived. As an application, the time decay estimate of solutions to the nonlinear problem is given. In contrast to the compressible Navier-Stokes system, for linear system regularities of the initial data are lower and independent of the order of derivative of solutions owing to smoothing effect from the Korteweg tensor. Furthermore, for the nonlinear system diffusion wave property is obtained with an initial data having lower regularity than that of study of the compressible Navier-Stokes system.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1619/fesi.64.163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Time decay estimate of solutions to the compressible Navier-Stokes-Korteweg system is studied. Concerning the linearized problem, the decay estimate with diffusion wave property for an initial data is derived. As an application, the time decay estimate of solutions to the nonlinear problem is given. In contrast to the compressible Navier-Stokes system, for linear system regularities of the initial data are lower and independent of the order of derivative of solutions owing to smoothing effect from the Korteweg tensor. Furthermore, for the nonlinear system diffusion wave property is obtained with an initial data having lower regularity than that of study of the compressible Navier-Stokes system.
分享
查看原文
可压缩Navier-Stokes-Korteweg系统解具有扩散波性质和平滑效应的时间衰减估计
研究了可压缩Navier-Stokes-Korteweg系统解的时间衰减估计。对于线性化问题,导出了初始数据具有扩散波性质的衰减估计。作为应用,给出了非线性问题解的时间衰减估计。与可压缩的Navier-Stokes系统相比,由于Korteweg张量的平滑作用,线性系统初始数据的规律性较低,且与解的导数阶数无关。此外,对于非线性系统的扩散波性质,用比可压缩Navier-Stokes系统的正则性更低的初始数据得到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信