Diagnosis of durability-related problems in concrete structures through comprehensive analysis and non-destructive testing: a case study

IF 3 Q2 ENGINEERING, CIVIL
M. Shah, M. Usman, R. A. Khushnood, A. Hanif
{"title":"Diagnosis of durability-related problems in concrete structures through comprehensive analysis and non-destructive testing: a case study","authors":"M. Shah, M. Usman, R. A. Khushnood, A. Hanif","doi":"10.1080/24705314.2023.2233812","DOIUrl":null,"url":null,"abstract":"ABSTRACT The present study investigated concrete durability problems at the National University of Sciences and Technology,Pakistan, through comprehensive analysis and non-destructive testing. During the visual inspection of concrete structures, different deterioration mechanisms such as alkali-silica aggregate reaction (ASR), carbonation, abrasion and drying shrinkage were found. After visual inspection, the data on ingredients used in the construction of various structures were collected, revealingthat different brands of cement used in construction contained high alkali-equivalent content. Fine aggregates were used from two different quarries during construction. The available literature and X-ray Diffraction (XRD) results showed that both the quarries’ aggregates have the potential for alkali-silica reactivity. Furthermore, the XRD results of gel-type material collected from mapped cracking indicated the presence of delhayelite, similar to alkali-silica gel, suggesting ASR. The XRD curves of the whitest powder collected from various sites showed the presence of sodium sulfate and calcium carbonate peaks, indicating salt hydration attacks. The carbonation rate in concrete ranges from 4.33 to 5.77 mm/year. The results of the rebound hammer and pulse velocity test indicated that concrete used in parking has low strength which is the main cause of abrasion. Based on these findings a few recommendations have been presented to avoid durability-related problems in future structures.","PeriodicalId":43844,"journal":{"name":"Journal of Structural Integrity and Maintenance","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Structural Integrity and Maintenance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24705314.2023.2233812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT The present study investigated concrete durability problems at the National University of Sciences and Technology,Pakistan, through comprehensive analysis and non-destructive testing. During the visual inspection of concrete structures, different deterioration mechanisms such as alkali-silica aggregate reaction (ASR), carbonation, abrasion and drying shrinkage were found. After visual inspection, the data on ingredients used in the construction of various structures were collected, revealingthat different brands of cement used in construction contained high alkali-equivalent content. Fine aggregates were used from two different quarries during construction. The available literature and X-ray Diffraction (XRD) results showed that both the quarries’ aggregates have the potential for alkali-silica reactivity. Furthermore, the XRD results of gel-type material collected from mapped cracking indicated the presence of delhayelite, similar to alkali-silica gel, suggesting ASR. The XRD curves of the whitest powder collected from various sites showed the presence of sodium sulfate and calcium carbonate peaks, indicating salt hydration attacks. The carbonation rate in concrete ranges from 4.33 to 5.77 mm/year. The results of the rebound hammer and pulse velocity test indicated that concrete used in parking has low strength which is the main cause of abrasion. Based on these findings a few recommendations have been presented to avoid durability-related problems in future structures.
通过综合分析和无损检测诊断混凝土结构耐久性相关问题:一个案例研究
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
9.50%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信