{"title":"Bayesian sequential joint detection and estimation under multiple hypotheses","authors":"Dominik Reinhard, Michael Fauss, A. Zoubir","doi":"10.1080/07474946.2022.2043053","DOIUrl":null,"url":null,"abstract":"Abstract We consider the problem of jointly testing multiple hypotheses and estimating a random parameter of the underlying distribution. This problem is investigated in a sequential setup under mild assumptions on the underlying random process. The optimal method minimizes the expected number of samples while ensuring that the average detection/estimation errors do not exceed a certain level. After converting the constrained problem to an unconstrained one, we characterize the general solution by a nonlinear Bellman equation, which is parameterized by a set of cost coefficients. A strong connection between the derivatives of the cost function with respect to the coefficients and the detection/estimation errors of the sequential procedure is derived. Based on this fundamental property, we further show that for suitably chosen cost coefficients the solutions of the constrained and the unconstrained problem coincide. We present two approaches to finding the optimal coefficients. For the first approach, the final optimization problem is converted into a linear program, whereas the second approach solves it with a projected gradient ascent. To illustrate the theoretical results, we consider two problems for which the optimal schemes are designed numerically. Using Monte Carlo simulations, it is validated that the numerical results agree with the theory.","PeriodicalId":48879,"journal":{"name":"Sequential Analysis-Design Methods and Applications","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2020-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sequential Analysis-Design Methods and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07474946.2022.2043053","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract We consider the problem of jointly testing multiple hypotheses and estimating a random parameter of the underlying distribution. This problem is investigated in a sequential setup under mild assumptions on the underlying random process. The optimal method minimizes the expected number of samples while ensuring that the average detection/estimation errors do not exceed a certain level. After converting the constrained problem to an unconstrained one, we characterize the general solution by a nonlinear Bellman equation, which is parameterized by a set of cost coefficients. A strong connection between the derivatives of the cost function with respect to the coefficients and the detection/estimation errors of the sequential procedure is derived. Based on this fundamental property, we further show that for suitably chosen cost coefficients the solutions of the constrained and the unconstrained problem coincide. We present two approaches to finding the optimal coefficients. For the first approach, the final optimization problem is converted into a linear program, whereas the second approach solves it with a projected gradient ascent. To illustrate the theoretical results, we consider two problems for which the optimal schemes are designed numerically. Using Monte Carlo simulations, it is validated that the numerical results agree with the theory.
期刊介绍:
The purpose of Sequential Analysis is to contribute to theoretical and applied aspects of sequential methodologies in all areas of statistical science. Published papers highlight the development of new and important sequential approaches.
Interdisciplinary articles that emphasize the methodology of practical value to applied researchers and statistical consultants are highly encouraged. Papers that cover contemporary areas of applications including animal abundance, bioequivalence, communication science, computer simulations, data mining, directional data, disease mapping, environmental sampling, genome, imaging, microarrays, networking, parallel processing, pest management, sonar detection, spatial statistics, tracking, and engineering are deemed especially important. Of particular value are expository review articles that critically synthesize broad-based statistical issues. Papers on case-studies are also considered. All papers are refereed.