Classification of brain tumor using devernay sub-pixel edge detection and k-nearest neighbours methodology

Ayush Arora, Ritesh Kumar, Shubham Tiwari, M. Shwetha, S. Venkatesan, R. Babu
{"title":"Classification of brain tumor using devernay sub-pixel edge detection and k-nearest neighbours methodology","authors":"Ayush Arora, Ritesh Kumar, Shubham Tiwari, M. Shwetha, S. Venkatesan, R. Babu","doi":"10.20517/2347-8659.2018.11","DOIUrl":null,"url":null,"abstract":"Any disease can be treated only once it is imaged, detected and classified. This paper proposes a set of algorithms for classification of a brain tumor with better accuracy and efficiency. The proposal uses a JPEG format of the DICOM image fed into three stages namely pre-processing, segmentation using sub-pixel edge detection method and using the nearest neighbor methodology for the detection and differentiation of benign and malignant tumors.","PeriodicalId":19129,"journal":{"name":"Neuroimmunology and Neuroinflammation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroimmunology and Neuroinflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.20517/2347-8659.2018.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Any disease can be treated only once it is imaged, detected and classified. This paper proposes a set of algorithms for classification of a brain tumor with better accuracy and efficiency. The proposal uses a JPEG format of the DICOM image fed into three stages namely pre-processing, segmentation using sub-pixel edge detection method and using the nearest neighbor methodology for the detection and differentiation of benign and malignant tumors.
基于devernay亚像素边缘检测和k近邻方法的脑肿瘤分类
任何疾病只有在成像、检测和分类后才能得到治疗。本文提出了一套具有较高准确率和效率的脑肿瘤分类算法。该方案采用JPEG格式的DICOM图像,分为预处理、亚像素边缘检测分割和最近邻方法检测和区分良恶性肿瘤三个阶段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
348
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信